
THE BOUNDARY OF A DIVISIBLE CONVEX SET

MICKAËL CRAMPON

Abstract. We try to describe the boundary of a divisible convex set at an infinitesimal level.
The geodesic flow of the Hilbert metric is the main tool in this study, because its asymptotic
exponential behaviour (Lyapunov exponents) is related to the shape of the boundary of the
convex set.

1. Introduction

I have studied in [Craar] the local asymptotic behaviour of the geodesic flow of Hilbert metrics.
It naturally led me to introduce what seems to be a new regularity property of convex functions.
I gave it the not-so-good name of approximate regularity.

Definition 1.1. Let U be an open convex subset of Rn−1 and f : U −→ R a C1 strictly convex
function. For x0 ∈ U and small v ∈ Rn−1, define fx0

(v) = f(x0 + v)− f(x0)− dx0
f(v). We say

that the function f is approximately regular at the point x0 ∈ U if, for all v ∈ Rn−1, the limit

lim
t→0

log(fx0
(tv) + fx0

(−tv))

log t

exists.

The property is here defined for strictly convex C1 functions but it has a trivial extension
to general convex functions. The main result of [Craar] about this property is the following
decomposition theorem, that I proved using the geodesic flow of Hilbert metrics:

Theorem 1.2 ([Craar], Theorem 6.1). Let f : U −→ R be a C1 strictly convex function. The
following propositions are equivalent:

(i) f is approximately regular at the point x0 ∈ U ;
(ii) there exist 1 6 p 6 n − 1, a splitting Rn−1 = ⊕p

i=1Gi and numbers +∞ > α1 > · · · >
αp > 1 such that for all v ∈ Gi,

lim
t→0

log(fx0
(tvi) + fx0

(−tvi))

log t
= αi;

(iii) there exist 1 6 p 6 n − 1,a filtration {0} = H0  H1  · · ·  Hp = Rn−1 and numbers
+∞ > α1 > · · · > αp > 1 such that, for any vi ∈ Hi rHi−1,

lim
t→0

log(fx0
(tvi) + fx0

(−tvi))

log t
= αi.

When f is approximately regular at x0, we call the numbers αi the Lyapunov exponents of f at
x0. It will be more convenient in this work to count the Lyapunov exponents with multiplicities,
taking into account the dimension of the subsets Gi. We thus define the vector of Lyapunov
exponents α = (αi)i=1···n−1, with α1 > · · · > αn−1 and we say that f is approximately α-regular
at x0.

Apart from the previous theorem, I do not know what more can be said about approximate regu-
larity. For example, I asked the question to know whether a convex function is Lebesgue-almost
everywhere approximately regular, and to describe the range of possible Lyapunov exponents.
But in fact, I do not even know if any convex function is approximately regular at at least one
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point.

In this note, I study these questions for the boundary of a divisible convex set for which lots
of properties can be deduced from its numerous symmetries. As an example, let us give the
following result.

Acknowledgements: I would like to thank François Ledrappier for shadowing orbits together.

2. Hilbert geometry and divisible convex sets

2.1. Hilbert geometry. A Hilbert geometry is a metric space (Ω, dΩ) where

• Ω is a properly convex open set of the real projective space RPn, n > 2; properly means
that there exists a projective hyperplane which does not intersect the closure of Ω, or,
equivalently, that there is an affine chart in which Ω appears as a relatively compact set;

• dΩ is the distance on Ω defined, for two distinct points x, y, by

dΩ(x, y) =
1

2
| log[a, b, x, y]|,

where a and b are the intersection points of the line (xy) with the boundary ∂Ω and
[a, b, x, y] denotes the cross ratio of the four points : if we identify the line (xy) with

R ∪ {∞}, it is defined by [a, b, x, y] = |ax|/|bx|
|ay|/|by| .

x

y

b

a

xx−

x+

ξ

Figure 1. The Hilbert distance and the Finsler metric

These geometries had been introduced by Hilbert at the end of the nineteenth century as exam-
ples of spaces where lines are geodesics, which one can see as a motivation for the fourth of his
famous problems: roughly speaking, this problem consisted in finding all geometries for which
lines are geodesics.
When Ω is an ellipsoid, one recovers in this way the Beltrami model of the hyperbolic space.
This is the only case where a Hilbert geometry is Riemannian. Otherwise, it is only a Finsler
space: The Hilbert metric dΩ is generated by a field of norms F on Ω, the norm F (x, u) of a
tangent vector u ∈ TxΩ being given by the formula

F (x, u) =
|u|

2

(

1

|xu+|
+

1

|xu−|

)

,

where | . | is an arbitrary Euclidean metric, and u+ and u− are the intersection points of the
line x+R.u with the boundary ∂Ω.
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2.2. Horospheres. Assume Ω is strictly convex with C1 boundary. In this case, Busemann
functions and horospheres can be defined as in hyperbolic geometry.
The Busemann function based at x ∈ ∂Ω is defined by

bx(z, y) = lim
p→x

dΩ(z, p) − dΩ(y, p),

which, in some sense, measures the (signed) distance from z to y in Ω as seen from the point
x ∈ ∂Ω.

The horosphere passing through z ∈ Ω and based at x ∈ ∂Ω is the set

Hx(z) = {y ∈ Ω, bx(z, y) = 0}.

Hx(z) is also the limit when p tends to x of the metric spheres S(p, dΩ(p, z)) about p passing
through z. In some sense, the points on Hx(z) are those which are as far from x as z is.

2.3. Divisible convex sets. Since projective transformations preserve cross-ratios, the group
of projective symmetries of Ω,

Aut(Ω) = {g ∈ PSLn+1(R), g(Ω) = Ω},

is a subgroup of isometries of the Hilbert geometry (Ω, dΩ)
1. A discrete subgroup Γ of Aut(Ω)

acts then properly discontinuously on Ω; by Selberg’s lemma, it contains a finite index subgroup
which has no torsion. The quotient Ω/Γ is thus an orbifold in general, a manifold if Γ has no
torsion.

Definition 2.1. We say that a properly convex open set Ω or the corresponding Hilbert geome-
try (Ω, dΩ) is divisible if there exists a discrete subgroup Γ of Aut(Ω) with compact quotient Ω/Γ.

The first example of divisible convex set is the ellipsoid, that is, the hyperbolic space. Y. Benoist
proved the following alternative in [Ben04].

Theorem 2.2. Let Ω be a divisible convex set, divided by a discrete subgroup Γ of Aut(Ω). The
following properties are equivalent:

• the convex set Ω is strictly convex;
• the boundary ∂Ω is of class C1;
• the Hilbert geometry (Ω, dΩ) is Gromov-hyperbolic;
• the group Γ is Gromov-hyperbolic.

An important argument of duality is used to prove this theorem, that we recall now. Consider
one of the two convex cones C ⊂ Rn+1 whose trace is Ω. The dual convex set Ω∗ is the trace of
the dual cone

C∗ = {f ∈ (Rn+1)∗, ∀x ∈ C, f(x) > 0}.

The set Ω∗ can be identified with the set of projective hyperplanes which do not intersect Ω:
to such a hyperplane corresponds the line of linear maps whose kernel is the given hyperplane.
For example, we can see the boundary of Ω∗ as the set of tangent spaces to ∂Ω. In particular,
when Ω is strictly convex with C1 boundary, there is a homeomorphism between the boundaries
of Ω and Ω∗: to the point x ∈ ∂Ω we associate the (projective class of the) linear map x∗ such
that ker x∗ = Tx∂Ω. The group Aut(Ω) acts on the dual convex set Ω∗ via g.y = (tg)−1(y),
g ∈ Aut(Ω).

Lemma 2.3 ([Ben04], Lemme 2.8). Let Γ be a discrete subgroup of Aut(Ω). The action of Γ
on Ω is cocompact if and only if the action of Γ on Ω∗ is also cocompact.

1It is conjectured that, for most Hilbert geometries, all isometries are projective.
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Apart from the ellipsoid, various examples of strictly convex divisible sets have been given.
Some can be constructed using Coxeter groups ([KV67], [Ben06b]), some by deformations of
hyperbolic manifolds (based on [JM87] and [Kos68], see also [Gol90] for the 2-dimensional case);
we should also quote the exotic examples of M. Kapovich [Kap07] of divisible convex sets in
all dimensions which are not quasi-isometric to the hyperbolic space (Y. Benoist [Ben06b] had
already given an example in dimension 4).
Non-strictly convex examples are more difficult to find. The trivial ones are given by the
symmetric spaces of the groups SLn(K) (K being the set of complex, quaternionic or octonionic
numbers2) or by products (see the historical remarks in [Ben03]). The only other known examples
have been constructed by Y. Benoist [Ben06a] and L. Marquis [Mar10] in dimension 3 using
Coxeter groups.

2.4. Properties of the dividing group. Let Ω ⊂ RPn be a properly convex strictly convex
set, divided by a torsion-free discrete group Γ. All elements g ∈ Γ are hyperbolic isometries of
the Hilbert geometry (Ω, dΩ). That means the following.
The element g fixes exactly two points x+g and x−g on ∂Ω; the point x+g is the attractive point

of g, x−g is the repulsive point of g : for any point x ∈ Ωr {x−g , x
+
g }, limn→±∞ gn(x) = x±g .

Denote by (ℓi(g))i=0···n the complex eigenvalues of g, counted with multiplicities and ordered
such that |ℓ0(g)| > |ℓ1(g)| > · · · > |ℓn(g)|. The largest and smallest eigenvalues ℓ0 and ℓn(g) are
simple, real and positive, and the points x+g and x−g are the corresponding eigenvectors.

Let λi(g) = log |ℓi(g)|, i = 0 · · · n. The isometry g acts as a translation of length 1
2(λn(g)−λ0(g))

on the open segment ]x−g x
+
g [.

The following result will be crucial to deduce some rigidity results.

Theorem 2.4 (Y. Benoist [Ben00]). Let Ω ⊂ RPn be a properly convex strictly convex set,
divided by a discrete group Γ. The group Γ is Zariski-dense in SLn+1(R), unless Ω is an ellipsoid.

Recall that the Zariski-closure of a subgroup Γ of SLn+1(R) is the smallest algebraic subgroup
G of SLn+1(R) which contains Γ. We then say that Γ is Zariski-dense in G.
The hypothesis of strict convexity in the last theorem is actually unnecessary, but the proof in
the general case is far more involved [Ben03].
This last theorem will be useful through the following characterization of Zariski-dense subgroups
of semisimple Lie groups, which is also due to Y. Benoist, and that we explain in the case of the
group SLn+1(R). To each element g in SLn+1(R), we associate the vector log(g) = [λ0(g) : · · · :

λn(g)] ∈ RP
n and for a subgroup Γ of SLn+1(R), we set log Γ = {log g, g ∈ Γ}.

Theorem 2.5 (Y. Benoist, [Ben97]). Let Γ be a subgroup of SLn+1(R). If Γ is Zariski-dense in
SLn+1(R), then log Γ has nonempty interior.

3. Curvature of the boundary

3.1. What is curvature. Let us begin with an old theorem of A. D. Alexandrov [Ale39] about
convex functions:

Theorem 3.1. Let f : U ⊂ Rn−1 7−→ R be a convex function defined on a convex open set U of

Rn−1. The Hessian matrix Hess(f) =
(

∂2f
∂i∂j

)

ij
exists Lebesgue almost everywhere in U .

Let Ω be a bounded convex set of the Euclidean space Rn. It is then possible to compute the
Hessian of its boundary at Lebesgue almost every point x ∈ ∂Ω. We will call a C2 point a point
x where this is possible.
The Hessian is a positive symmetric bilinear form on the tangent space Tx∂Ω. It represents
the curvature of the boundary at x. When it is degenerate, that means the curvature of the
boundary is zero in some tangent direction.

2In the case of octionions, the only possibility is n = 3.
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The Hessian is a Euclidean notion, but its degeneracy is not. Namely, if Ω is a properly convex
open set of RPn and x a point of ∂Ω, we can choose an affine chart centered at x and a metric
on it and compute the Hessian of ∂Ω at x; its degeneracy does not depend on the choice of the
affine chart and the metric.

We can measure the vanishing of the curvature of ∂Ω in the following way. Fix a smooth measure
λ∗ on the boundary of the dual convex set Ω∗, and call λ its pull-back to ∂Ω. Then λ can be
seen as a measure of the curvature of ∂Ω. It can be decomposed as

λ = λac + λsing,

where λac is an absolutely continuous measure and λsing is singular with respect to any Lebesgue
measure on ∂Ω. For example, in dimension 2, if ∂Ω is not C1 at some point x then λ will have an
atom at x. The support of λac is the closure of the set of C2 points with nondegenerate Hessian.
Though Ω is convex, it may happen that λac = 0, that is, λ is singular with respect to some (hence
any) smooth measure on ∂Ω. This is equivalent to the fact that the Hessian is degenerate at
Lebesgue-almost all C2 point of ∂Ω. We then say that the curvature of the boundary is supported
on a set of zero Lebesgue measure.

3.2. Curvature of the boundary of a divisible convex set. The curvature of the boundary
of a divisible convex set has been investigated by J.-P. Benzécri [Ben60].

Lemma 3.2 (J.-P. Benzécri [Ben60]). Let Xn denote the set of properly convex open sets of
RPn, equipped with the Hausdorff topology. Let Ω ∈ Xn.

• If there exists a C2 point x ∈ ∂Ω with nondegenerate Hessian, then the closure of the
orbit PSLn+1(R) · Ω in Xn contains an ellipsoid.

• If Ω is divisible then the orbit PSLn+1(R) · Ω is closed in Xn.

Proof. These two results are respectively Propositions 5.3.10 and 5.3.3 of [Ben60]. Let us recall
the proofs.
Choose an affine chart and a Euclidean metric on it such that Ω appears as a bounded convex
open set of Rn. Let x be a point of ∂Ω with nondegenerate Hessian. Let E be the osculating
ball of ∂Ω at x. It defines a hyperbolic geometry (E , dE ). Pick a point y ∈ ∂E distinct from
x, and choose a hyperbolic isometry g of E whose attracting fixed point y and repulsive one x.
Now, since ∂E and ∂Ω are tangent up to order 2, it is not difficult to see that gn · Ω converges
to E when n goes to +∞. This proves the first point.
The second point is a consequence of another result of Benzécri, which says that the action
of PSLn+1(R) on the set Ẋn = {(Ω, x), Ω ∈ Xn, x ∈ Ω} is proper (this is Théorème 3.2.1 of
[Ben60]). Each orbit PSLn+1(R) · (Ω, x) is thus closed. Now, the orbit PSLn+1(R) ·Ω is closed in

Xn if and only if the union ∪x∈ΩPSLn+1(R) · (Ω, x) is closed in Ẋn. Since Ω is divisible, divided,
say, by the group Γ, there is a compact subset K of Ω such that Γ ·K = Ω. So the union

⋃

x∈Ω

PSLn+1(R) · (Ω, x) =
⋃

x∈K

⋃

g∈Γ

PSLn+1(R) · (Ω, g(x)) =
⋃

x∈K

PSLn+1(R) · (Ω, x)

is closed in Ẋn. �

More about Benzécri’s contributions can be found in L. Marquis’s survey [Mar13]; the proof of
the second point above is actually taken from it. As a consequence of the last lemma, we get
the following

Proposition 3.3. Let Ω ⊂ RPn be a divisible convex set, and assume Ω is not an ellipsoid.
Then any C2 point has degenerate Hessian. In particular, the curvature of ∂Ω is supported on a
subset of zero Lebesgue measure.

Proof. Assume that the Hessian of ∂Ω is not degenerate at some C2 point. Lemma 3.2 implies
that the orbit PSLn+1(R) · Ω is closed and contains an ellipsoid. So Ω itself is an ellipsoid. �
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When the convex set is strictly convex, the geodesic flow of the Hilbert metric allows to say
more about the properties of the boundary. The rest of this paper is dedicated to this case.

4. The geodesic flow and the boundary

4.1. The geodesic flow. When Ω is strictly convex, the metric space (Ω, dΩ) is uniquely geo-
desic, and the geodesics are lines. The geodesic flow is then well defined on the homogeneous
bundle π : HΩ −→ Ω of tangent directions: To find the image by ϕt of a point w = (x, [ξ]) ∈ HΩ,
consisting of a point and a direction, one follows the geodesic line cw leaving x in the direction
[ξ], and one has ϕt(w) = (cw(t), [c

′
w(t)]).

By projection, this also defines the geodesic flow on HM , the homogeneous bundle of M = Ω/Γ.
The geodesic flow has the same regularity as the boundary of Ω. So, if Ω is strictly convex and
divisible, by Theorem 2.2, it is a C1 flow. We will denote by X the generator of the geodesic
flow (both on HΩ or HM).

Theorem 4.1 (Y. Benoist, [Ben04]). Let M = Ω/Γ a compact manifold quotient of a strictly

convex set Ω ⊂ RPn. The geodesic flow on HM is an Anosov flow: There exist a ϕt-invariant
splitting of the tangent bundle

THM = R.X ⊕ Eu ⊕ Es

and constants C,α > 0 such that, for any t > 0,

‖dϕt(Zs)‖ 6 Ce−αt‖Zs‖, Zs ∈ Es,

‖dϕ−t(Zu)‖ 6 Ce−αt‖Zu‖, Zu ∈ Eu.

Here the norm ‖ · ‖ denotes an arbitrary Finsler metric on HM ; because HM is compact, the
Anosov property of the flow does not depend on the metric, even if the constants C and/or a
do.
In our situation, the stable and unstable bundles Es and Eu can be geometrically understood
using horospheres. For w ∈ HΩ, define the sets

W s(w) = {v ∈ HΩ | v+ = w+, π(v) ∈ Hw+(π(w))},

and

W u(w) = {v ∈ HΩ | v− = w−, π(v) ∈ Hw−(π(w))}.

The sets W s(w) and W u(w) are C1 submanifolds of HΩ and it is not difficult to see that they
are the stable and unstable sets of the geodesic flow (d denotes the distance generated by ‖ · ‖):

W s(w) = {v ∈ HΩ, lim
t→+∞

d(ϕtw,ϕtv) = 0}

and

W u(w) = {v ∈ HΩ, lim
t→−∞

d(ϕtw,ϕtv) = 0}.

Both families W s(w), w ∈ HΩ and W u(w), w ∈ HΩ form a ϕt-invariant foliation of HΩ. Ev-
erything projects down on HM where we will use the same notation. The stable and unstable
bundles are then the tangent spaces to the stable and unstable foliations : Es(w) = TwW

s(w),
Eu(w) = TwW

u(w).

The asymptotic behaviour of the geodesic flow is encoded in the boundary of Ω: When we look
at the behaviour of the norm ‖dϕtZ‖ when t goes to +∞, for some Z ∈ TwHΩ, we see appearing
naturally the graph of the boundary at the extremal point w+. This observation is at the basis
of this work. To illustrate this observation, notice the following “consequence” of Theorem 4.1:

Proposition 4.2 ([Ben04], Proposition 4.6). The boundary of a divisible strictly convex set is
Cα and β-convex for some 1 < α 6 2, β > 2. In particular, the geodesic flow is Cα for some
α > 1.

To understand the last statement, we recall the following definitions:
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Definition 4.3. Let 1 < α < 2, β > 1 and U an open subset of Rn. A C1-function f : U ⊂
Rn −→ R is

• of class Cα if, for some constant C > 0,

|f(x)− f(y)− dxf(y − x)| 6 C|x− y|1+ε, x, y ∈ U ;

• β-convex if, for some constant C > 0,

|f(x)− f(y)− dxf(y − x)| > C|x− y|β, x, y ∈ U.

4.2. Approximate regularity and Lyapunov exponents. Recall the following definition:

Definition 4.4. Let Ω ⊂ RPn be a strictly convex set with C1 boundary. A point w ∈ HΩ is
weakly regular if, for any Z ∈ TwHΩr {0}, the limit

χ(Z) = lim
t→±∞

1

t
log ‖dϕt(Z)‖

exists. It is said to be forward or backward weakly regular if the limits exist only when t goes
to +∞ or −∞ (or if both limits differ). The number χ(Z) is called the Lyapunov exponent of
Z.

Because stable and unstable manifolds W s(w) and W u(w) at w have the same projection on
Ω, there is a symmetry between the action of the flow on stable and unstable vectors (see for
example Lemma 2.3 in [Craar]). In particular, we can see that if Zs ∈ Es(w), Zu ∈ Eu(w)
project on the same vector z ∈ Hw, then

χ(Zu) = 2 + χ(Zs).

The complete behaviour is then encoded in the behaviour of unstable vectors, and we will be
only interested in these vectors by looking at the restriction of the differential dϕt to the bundle
Eu. Because the geodesic flow is an Anosov flow, all Lyapunov exponents of unstable vectors
are positive.
Given a forward weakly regular point w ∈ HΩ, the numbers χ(Z), for any Z ∈ Eu(w), can
take only a finite number 0 < χ1 < · · · < χp of values, which are called the positive Lyapunov
exponents of w. There is then a ϕt-invariant splitting

THΩ = E1 ⊕ · · · ⊕ Ep

along the orbit ϕ.w, called Lyapunov splitting, such that, for any vector Zi ∈ Ei r {0},

lim
t→+∞

1

t
log ‖dϕt(Zi)‖ = χi.

As for the exponents (αi) appearing in the definition of approximate regularity, we will count the
(χi) with multiplicities. We thus have n − 1 positive Lyapunov exponents (χi)i=1···n−1 ordered
as χ1 6 · · · 6 χn. The main result of [Craar] is the following

Theorem 4.5 ([Craar], Theorem 1). Let Ω ⊂ RPn be a strictly convex set with C1 boundary. A
point w ∈ HΩ is forward weakly regular if and only if the boundary ∂Ω is approximately regular
at the point w+ = ϕ+∞(w). If 0 > χ1 6 · · · 6 χn are the positive Lyapunov exponents of w,
then ∂Ω is approximately α-regular with α = (αi)i=1···n−1 given by αi = 2/χi.

5. The set of approximately regular points and the range of Lyapunov

exponents

Let Ω ⊂ RPn be a divisible strictly convex set. Our interest now will lie on the set of approxi-
mately regular points Λ ⊂ ∂Ω, as well as the set of all possible Lyapunov exponents

A = {α(x) ∈ Rn−1, x ∈ Λ}.

By projective invariance of the notion of approximate-regularity, the set of approximately α-
regular points of ∂Ω is Γ-invariant, for any vector α. Since the action of Γ on ∂Ω is minimal, it
is either empty (if α 6∈ A) or a dense subset of ∂Ω (if α ∈ A).
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5.1. Oseledets’ theorem. The following result is a version of Osedelets’ ergodic multiplicative
theorem [Ose68]:

Theorem 5.1. Let M = Ω/Γ a manifold quotient of a strictly convex set Ω ⊂ RPn with C1

boundary. Let µ a ϕt-invariant probability measure on HM . The set of weakly regular points
has full µ-measure.

It allows us to deduce the following

Corollary 5.2. Let Ω ⊂ RPn be a divisible strictly convex set. The set A is nonempty and the
set Λ is dense in ∂Ω.

Proof. The set of ϕt-invariant probability measures on HM is nonempty. In particular, by
Oseledets’s theorem, there exists a weakly regular point w ∈ HΩ. By Theorem 4.5, the boundary
∂Ω is approximately regular at the point w+, so A is nonempty and Λ is dense in ∂Ω. �

5.2. Hyperbolic isometries and closed orbits. Recall that any element g ∈ Γ is a hyperbolic
isometry of the Hilbert geometry (Ω, dΩ). We use the notation introduced in section 2.4.
For g ∈ Γ, pick a point w ∈ HΩ such that w− = x−g , w+ = x+g . The projection on HM of the

orbit of w under the flow is a closed orbit of the flow, of length 1
2 (λn(g)− λ0(g)). Two elements

g and g′ yield the same closed orbit if and only if they are conjugated. Conversely, any closed
orbit is obtained in this way. In other words: Closed orbits of the geodesic flow on HM are in
bijection with conjugacy classes of Γr {1}.

Proposition 5.3. Let Ω ⊂ RPn be a divisible strictly convex set, divided by a torsion-free
discrete group Γ < Aut(Γ). Let g ∈ Γ. The boundary ∂Ω is approximately α(g)-regular at the
point x+g , with α(g) = (αi(g))i=1···n−1 given by

(5.1) αi(g) =
1− λn(g)/λ0(g)

1− λi(g)/λ0(g)
.

Proof. In [Cra09], I showed that the positive Lyapunov exponents (χi(g))i=1···n−1 of the closed
orbit corresponding to the (conjugacy class of the) element g ∈ Γ were given by

χi(g) = 2
λ0(g) − λi(g)

λ0(g)− λn(g)
.

Theorem 4.5 gives the result. �

The element g ∈ Γ acts on the dual convex set Ω∗ by g.y = (tg)−1(y). To g ∈ Γ, we thus
associate the isometry g∗ = (tg)−1 ∈ Aut(Ω∗). The dual point to x+g is the point x−g∗ , at which

∂Ω∗ is approximately α(g∗)-regular, with α(g∗) = (αi(g
∗))i=1···n−1 given by

αi(g
∗) =

1− λn(g)/λ0(g)

1− λn(g)/λn−i(g)
.

Remark that
1

αn−i(g∗)
+

1

αi(g)
= 1, i = 1 · · · n− 1.

In general, if ∂Ω is approximately α-regular at some point x with α = (αi)i=1···n−1, one can
expect ∂Ω to be approximately α∗-regular at the dual point x∗ ∈ ∂Ω∗ with α∗ = (α∗

i )i=1···n−1

satisfying to the previous relation: 1/α∗
n−i + 1/αi = 1, i = 1 · · · n− 1.. I was able to prove this

fact only for Ω ⊂ RP2 in [Craar].

If Ω is an ellipsoid, then obviously Λ = ∂Ω and A = {2}. This second property is characteristic
of the ellipsoid. (The first one will be treated in section 5.5.)

Corollary 5.4. Let Ω ⊂ RPn be a divisible strictly convex set. The closure A of A has empty
interior if and only if Ω is an ellipsoid.
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Proof. Assume Ω is not an ellipsoid. Then, by Theorems 2.4 and 2.5, the set

log Γ = {[λ0(g) : · · · : λn(g)], g ∈ Γ} ⊂ RPn

has nonempty interior.

Now, the set A contains the vectors α(g) = (αi(g)), g ∈ Γ, defined by αi(g) = 1−λn(g)/λ0(g)
1−λi(g)/λ0(g)

.

Hence, A contains the image of the well-defined continuous function

log Γ −→ Rn−1

[λ0 : · · · : λn] 7−→ (
1− λn/λ0

1− λ1/λ0
, · · · ,

1− λn/λ0

1− λn−1/λ0
).

This gives the result. �

It is likely that one can replace A by A in the last proposition. A way to prove that would be
to see that the set AM defined in section 5.3 contains the interior of A.

5.3. Ergodic measures. Let Λ(HΩ) be the set of forward weakly regular points of HΩ, which
is obviously Γ-invariant. By Theorem 4.5, the set Λ is given by

Λ = {w+ ∈ HΩ, w ∈ Λ(HΩ)}.

Let M be the set of invariant probability measures of the flow on HM . Each measure m ∈ M
defines by lifting it a measure m̃ on HΩ which is invariant under the actions of Γ and the flow.
Oseledets’ theorem tells us that, for any m ∈ M, Λ(HΩ) has full m̃-measure, hence Lyapunov
exponents are defined m̃-almost everywhere. If m is an ergodic measure, that is invariant sets
have zero or full measure, then Lyapunov exponents are constant almost everywhere: to each er-
godic measurem we can thus associate its positive Lyapunov exponents χ1(m) 6 · · · 6 χn−1(m).

We can associate, in a one-to-one way, to each invariant probability measure m on HM a Γ-
invariant Radon measure M = M(m) on the space of oriented geodesics of Ω given by ∂2Ω =
(∂Ω×∂Ω)r∆, where ∆ = {(x, x), x ∈ ∂Ω} (see [Kai90] for example). If m is ergodic, Oseledets’
theorem implies that for M -almost all (x, y) ∈ ∂2Ω, the geodesic from x to y is weakly regular
with positive Lyapunov exponents χ1(m) 6 · · · 6 χn−1(m); thus, for M -almost all (x, y) ∈ ∂2Ω,
the boundary ∂Ω is approximately α(m)-regular at x, with α(m) = (αi(m)))i=1···n−1 given by

αi(m) =
2

χi(m)
.

The set AM = {α(m), m ∈ M} is an interesting subset of A. As I said before, it might contain
the interior of A.
The diversity of ergodic measures gives an idea of the complexity of the boundary of a divisible
strictly convex set which is not an ellipsoid. Here are some examples.

5.3.1. Closed orbits. The easiest examples of ergodic measures are the Lebesgue measures lg
supported by a closed orbit g, associated to a conjugacy class of a hyperbolic element g ∈ Γ.
The corresponding subset of ∂2Ω of full M(lg)-measure is precisely the orbit of (x−g , x

+
g ) under

Γ. This has been treated in the previous part.
Denote by MPer = {lg, g ∈ Γ} the set of ergodic measures supported on closed orbits and define
AMPer

= {α(m), m ∈ MPer}. It is a consequence of the Anosov closing lemma that MPer is
dense in the set of ergodic measures, so we could expect the following

Proposition 5.5. Let Ω ⊂ RPn be a divisible strictly convex set. The set AMPer
is dense in

AM.

Proof. This is a consequence of a nontrivial result one can find in [Kal11] (Theorem 1.4): it states
that the vector χ(m) associated to an ergodic measure can be approximated by a sequence of
vectors (χ(gn)) with gn ∈ MPer. The vector α(m) is thus approximated by the sequence
(α(gn)). �
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5.3.2. Gibbs measures. AGibbs measure is the equilibrium state of a Hölder continuous potential
f : HM −→ R: it is the unique invariant probability measure µf such that

hµf
+

∫

f dµf = sup{hm +

∫

f dm, m ∈ M}.

The corresponding measure Mf on ∂2Ω can always be written as Mf = FM s
f ×Mu

f , where F is a

continuous function on ∂2Ω, and M s
f and Mu

f are two finite measures on ∂Ω. The three objects
are determined by the potential; in particular, Mu

f and M s
f are given by the Patterson-Sullivan

construction, associated to the potentials f and σ ∗ f , where σ is the flip map, defined on HΩ
by σ(x, [ξ]) = (x, [−ξ]) (see [Cou03] or [Led95]).
Among Gibbs measures is for instance the Bowen-Margulis measure µBM which is the measure
of maximal entropy of the flow, that is, the equilibrium state associated to the potential f = 0.
The corresponding measure MBM is given by

dMBM (ξ+, ξ−) = e2δ(ξ
+|ξ−)odµ2

o(ξ
+, ξ−),

where µo is the Patterson-Sullivan measure at an arbitrary point o ∈ Ω, and (ξ+|ξ−)o is the
Gromov product ξ+ and ξ− based at the point o: we have (ξ+|ξ−)o = 1

2(bξ−(o, x) + bξ−(o, x))

for any point x ∈ (ξ−ξ+) (see [Sul79]).
In [Cra09], I had proved that χ+(µBM ) =

∑

χi(µBM ) = n − 1. Thus, we get that µo-almost
every point of ∂Ω is approximately α(µBM )-regular with α(µBM ) = (αi(µBM ))i=1···n−1, such
that (

∑

i 1/αi(µBM ))−1 = 2(n−1). For example, in dimension 2, µo-almost every point of ∂Ω is
approximately 2-regular. A question I am not able to answer is to know if, in dimension n > 3,
the αi are all equal to 1 if and only if Ω is an ellipsoid.

5.4. Shape of the boundary at Lebesgue almost every point. The Sinai-Ruelle-Bowen
(SRB) measure µ+ is the equilibrium state associated to the potential

f+ =
d

dt
|t=0 log det dϕ

t
|Eu

.

This potential is Hölder continuous because the geodesic flow is Cα for some α > 1. The mea-
sure µ+ is the only measure whose conditional measures (µ+)u along unstable manifolds are
absolutely continuous.
Closely related to this measure is the “reverse” SRB measure µ− = σ ∗µ+, which is the equilib-
rium state of the potential

f− = −
d

dt
|t=0 log det dϕ

t
|Es

.

The measure µ− is the only invariant measure whose conditional measures along stable mani-
folds are absolutely continuous.
In the case of the ellipsoid, µ+, µ− and µBM all coincide, since f+ = f− = 0, and they are all ab-
solutely continuous; indeed, they coincide with the Liouville measure of the flow. When Ω is not
an ellipsoid, the Zariski-density of the cocompact group Γ implies via Livschitz-Sinai theorem
that there is no absolutely continuous measure (see [Ben04]). So the three measures are distinct.

The measure µ+ is also the only one which satisfies the equality in the Ruelle inequality (see
[LY85]). Recall that the Ruelle inequality relates the entropy of an invariant measure m to the
sum of positive Lyapunov exponents χ+ of the flow:

hm 6

∫

χ+ dm.

For example, the topological entropy htop of the flow satisfies

htop = hµBM
6 n− 1,
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with equality if and only if Ω is an ellipsoid (this is the main result of [Cra09]). The measures
µ+ and µ− have the same entropy hSRB given by

hSRB =

∫

χ+ dµ+ = −

∫

χ− dµ−,

where χ− is the sum of negative Lyapunov exponents. In particular, if Ω is not an ellipsoid, we
have

∫

χ+ dµ+ = hSRB < hµBM
< n− 1. Hence the µ+-almost sure value χ+(µ+) of the sum of

positive Lyapunov exponents satisfies χ+(µ+) < n− 1.
The measure µ+ corresponds to the measure M+ on ∂2Ω which can be written M+ = F+M s ×
Mu, with Mu absolutely continuous, while the measure µ− corresponds to M− = F−Mu×M s.
In particular, we have the following

Proposition 5.6. Let Ω ⊂ RPn be a divisible strictly convex set. Then Lebesgue-almost every
point of ∂Ω is approximately α-regular with α = (αi)i=1···n−1 given by

αi =
2

χi(µ+)
.

Since ∂Ω is also Lebesgue almost-everywhere 2-differentiable by Alexandrov’s theorem, we have
that αi 6 2, i = 0 · · ·n − 1. When Ω is an ellipsoid, we have αi(SRB) = 2, i = 0 · · · n − 1.
Otherwise, the fact that χ+(µ+) < 0 implies that χ1(µ

+) < 1 hence α1 > 2. In particular, we
recover the fact that the curvature of ∂Ω is supported on a set of zero Lebesgue-measure.

5.5. The 2-dimensional case. In dimension 2, we can understand better the sets Λ and A.

5.5.1. The set of approximately regular points. We will see here that the property that Λ = ∂Ω
characteristic of the ellipsoid. This is probably true in higher dimensions but we would need a
more careful approach.

Proposition 5.7. Let Ω ⊂ RP2 be a divisible strictly convex set. If Ω is not an ellipse, then
there is a point of ∂Ω at which ∂Ω is not approximately regular.

To prove this proposition, we will use the specification property of an Anosov flow, that we
recall now (see [KH95]). It roughly means that given a family of pieces of orbits (S below),
there exists an orbit that follows these pieces.
A specification is a family S = (Si)i=0···N , for some N ∈ N ∪ {+∞}, of pairs Si = (wi, Ii) with
wi ∈ HM , Ii = [ti, Ti], ti < Ti which satisfy ti > Ti−1. For T > 0, we say that the specification
S is T -spaced if ti − Ti−1 > T, i = 1 · · ·N . Given ε > 0, we say that the orbit of w ∈ HM
ε-shadows S if for any i = 0 · · ·N , t ∈ [ti, Ti], we have d(ϕt(w), ϕt(wi)) 6 ε.

Theorem 5.8. The Anosov flow ϕt : HM −→ HM has the specification property: given ε > 0,
there exists T (ε) such that, for any T (ε)-spaced specification S, there exists a point w ∈ HM
whose orbit ε-shadows S.

We can now give a

Proof of Proposition 5.7. Fix ε > 0, and let T = T (ε) given by the last theorem.
Choose two periodic points w1 and w2 in HM , with distinct positive Lyapunov exponent χ1 <
χ2. This is possible if Ω is not an ellipsoid, by Corollary 5.4. For k > 0, let S′

k be the specification

S′
k = ((w1, [0, 2

2k ]), (w2, [T + 22
k

, T + 22
k

+ 22
k+1

])).

If S = (wi, [ti, Ti])i=1···N is a specification, we set maxS = TN . For t > 0, we denote by t+S the
specification S = (wi, [t+ ti, t+Ti])i=1···N . We set S0 = S′

0, Sk = T +max(Sk−1)+S′
k, k > 1.We

finally define the infinite specification S by

S = (S0, S1, · · · ).
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Since S is T -spaced by construction, there is a point w whose orbit ε-shadows S, and, for Z ∈ Eu,
we have

| lim sup
t→−∞

1

t
log ‖dϕtZ‖ − χ2| < η(ε), | lim inf

t→+∞

1

t
log ‖dϕtZ‖ − χ1| < η(ε),

with limε→0 η(ε) = 0. So, if ε is taken so that η(ε) < (χ2−χ1)/27, then w is not forward weakly
regular. Theorem 4.5 implies that the boundary ∂Ω is not approximately regular at the point
w+. �

Proposition 5.7 yields the following

Corollary 5.9. For any n > 2, there exists a C1 strictly convex function f : U ⊂ Rn−1 −→ R

which is not approximately regular at some point.

Notice that is possible to construct by hand a function which is not approximately regular at
some point, but this is somehow funny to construct one in this way.

5.5.2. The range of Lyapunov exponents. We now turn to the study of A which benefits from
the following observation, which has no equivalent in dimension higher than 2. If µ ∈ M is
ergodic, the positive Lyapunov exponent of µ is given by

χ(µ) =

∫

d

dt
|t=0 log ‖dϕ

t‖ dµ,

hence the application µ −→ χ(µ) is continuous. In this case for example, proposition 5.5 is
immediate.

Proposition 5.10. Let Ω ⊂ RP2 be a divisible strictly convex set. Then A is a closed interval.

Proof. First, remark that AM is the image of the set of ergodic measures by the continuous
application

µ 7−→ α(µ) =
2

∫

d
dt |t=0 log ‖dϕt‖ dµ

.

As the set of ergodic measures is compact, AM is compact.
We now see that AM is convex. For that, recall that AMPer

is dense in AM. So it suffices to
prove that for any g, g′ ∈ MPer, ε > 0 and λ ∈ [0, 1], we can find gε ∈ MPer so that

|χ(gε)− (λχ(g) + (1− λ)χ(g′))| < ε.

This is a simple application of the shadowing lemma (a particular case of the specification
property, see [KH95]).
It remains to see that A = AM. Pick a point w ∈ Λ with Lyapunov exponent χ(w). Consider
the measures µT defined for T > 0 by

∫

f dµT =
1

T

∫ T

0
f(ϕtw) dt.

For f = d
dt |t=0 log ‖dϕ

t‖, we have

lim
T→+∞

1

T

∫

log
d

dt
|t=0‖dϕ

t‖ dµT = lim
T→+∞

1

T
log ‖dϕT ‖ = χ(w).

Hence, any accumulation point µ of the family (µT )T>0 is an invariant measure such that
χ(µ) = χ(w). �

Remark that, in fact, the same proof would prove that

A = {lim sup
t→+∞

1

t
log ‖dwϕ‖, w ∈ Ω}.
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