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Abstract. Let M be a compact manifold of dimension n with a strictly convex projective
structure. We consider the geodesic flow of the Hilbert metric on it which is known to be
Anosov. We prove that its topological entropy is less than n − 1, with equality if and only if
the structure is Riemannian hyperbolic. As a corollary, we get that the volume entropy of a
divisible strictly convex set is less than n − 1, with equality if and only if it is an ellipsoid.

1. Introduction

In 1936, in what seems to be the first general introduction to the notion of locally homogeneous
space [21], Charles Ehresmann noticed the following : it is not excluded for the universal cover-
ing of some compact locally projective surface to be a bounded convex domain whose boundary
would not be analytic. But immediately he added that to his mind such a case should not oc-
cur. Thirty years later, Kac and Vinberg [44] proved that this implausible situation was indeed
possible.
Such surfaces, and by extension, such manifolds are the main objects of this article. These
are compact manifolds which can be written as a quotient Ω/Γ, where Ω is a strictly convex
proper open set of the projective space and Γ a subgroup of the projective group acting cocom-
pactly on Ω. Such a manifold is said to be strictly convex projective and Ω is said to be divisible.

Lots of compact manifolds admit strictly convex projective structures. The basic example is
a hyperbolic manifold for which the Beltrami-Klein model of hyperbolic space provides such a
structure. As observed on many occasions by various authors, for any other strictly convex pro-
jective structure, the boundary of the convex set is much less regular. Ehresmann first noticed
that it was nowhere analytic. Then Benzécri [11] proved that if the boundary was C2, then the
convex set was an ellipsoid. Finally, from a different point of view, Edith Socié-Methou [42]
proved that if the convex set has a C2 boundary with positive definite Hessian, then, except in
the case of an ellipsoid, its group of isometries was compact.
Despite everything, these non-smooth structures are numerous in various senses :

• If a manifold admits a hyperbolic structure then it may also admit some non-smooth
strictly convex projective structures ; moreover, the deformation space G(M) of such
structures may be much bigger than the Teichmüller space T (M) of hyperbolic struc-
tures.
In dimension 2, Goldman [24] proved that it is a real open cell of dimension 16g − 16,
where g ≥ 2 denotes the genus of the surface, whereas T (M) is only of dimension 6g−6.
In dimension higher than 3, Mostow’s rigidity theorem [39] claims that T (M) is at most
a point. It follows from the works of Benzécri [11] and Koszul [33] on affine and pro-
jective manifolds that G(M) is open in the space of projective structures RP

n(M). In
particular, Johnson and Millson [29] constructed non trivial continuous deformations of
some hyperbolic structure into strictly convex projective ones.

• There are manifolds which admit strictly convex projective structures but no hyperbolic
structure. Such example cannot exist in dimension 2 and 3 but Benoist [10] constructed
an example in dimension 4, and Kapovich [30] proved that some Gromov-Thurston man-
ifolds [26] actually provided other examples.
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Any strictly convex set Ω carries a Hilbert metric dΩ (see section 2.1). When Ω is an ellipsoid,
(Ω, dΩ) coincides with the hyperbolic space; in the other cases, the metric is not Riemannian
anymore, but comes from a Finsler metric which has the same regularity as the boundary of
the convex. Hilbert metric is invariant under any homography, and thus provides a metric on
any compact projective manifold M = Ω/Γ. With this metric, M is projectively flat : in local
projective charts, geodesics, as locally shortest paths, are straight lines.

These structures are for various reasons generalizations of hyperbolic ones. Despite the lack
of regularity, we can define a notion of curvature and prove it is constant and strictly negative.
Furthermore, Yves Benoist proved the following theorem :

Theorem ([7]). Let Ω be a divisible convex set, divided by Γ. The following statements are
equivalent :

• the space (Ω, dΩ) is Gromov-hyperbolic ;
• Ω is strictly convex ;
• the boundary ∂Ω of Ω is C1 ;
• Γ is Gromov-hyperbolic.

This paper can be seen as a continuation of [7], where Benoist initiated the study of the geodesic
flow of the Hilbert metric. In particular, Benoist proved similar properties to those of the
hyperbolic geodesic flow, namely that the flow was Anosov and topologically mixing. But
he already made the following observation, which distinguished the two dynamical systems :
whereas hyperbolic geodesic flows admit the Liouville measure as natural invariant measure, the
others do not admit any smooth invariant measure.
A major invariant in the theory of dynamical systems (see [31]) is the topological entropy, which
roughly speaking measures how the system separates the points, how much it is chaotic. Let
us recall briefly its definition. Given a system ϕt : X −→ X on a compact metric space (X, d),
we define the distances dt, t ≥ 0, on X by dt(x, y) = max0≤s≤t d(ϕs(x), ϕs(y)), x, y ∈ X. The
topological entropy of ϕ is then the well defined quantity

htop(ϕ) = lim
ǫ→0

[

lim sup
t→∞

1

t
log N(ϕ, t, ǫ)

]

∈ [0,+∞],

where N(ϕ, t, ǫ) denotes the minimal number of open sets of diameter less than ǫ for dt needed
to cover X.
It is well known that the topological entropy of the hyperbolic geodesic flow is n − 1 when the
manifold is of dimension n. Our main theorem answers a question that emerged during a Finsler
meeting at the CIRM in 2005 and provides a new distinction between the Riemannian and the
non-Riemannian cases :

Theorem 1.1. Let ϕ be the geodesic flow of the Hilbert metric on a strictly convex projective
compact manifold M of dimension n. Its topological entropy htop(ϕ) satisfies the inequality

htop(ϕ) ≤ (n − 1),

with equality if and only if the Hilbert metric comes from a Riemannian metric.

The proof of this result is mainly based on results in the Anosov systems theory, developed
since the 60’s, and on the geometrical approach to second order differential equations made by
Patrick Foulon in [22].

Antony Manning [35] noticed that on non positively curved Riemannian manifolds, the topologi-
cal entropy of the geodesic flow was equal to the volume entropy of the Riemannian metric. The
volume entropy of a Riemannian metric g on M measures the exponential asymptotic growth of
the volume of balls in the universal covering M̃ ; it is defined by

hvol(g) = lim
r→∞

1

r
log vol(B(x, r)),
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where vol denotes the Riemannian volume corresponding to g. We can also consider the volume
entropy hvol(Ω, dΩ) of a Hilbert geometry (Ω, dΩ) and extends the result of Manning in this case.
This yields the following rigidity result :

Corollary 1.2. Let Ω be a strictly proper convex open set in P(Rn) divided by a group Γ ∈
PGL(Rn) such that M = Ω\Γ is compact. Then

hvol(Ω, dΩ) ≤ n − 1

with equality if and only if Ω is an ellipsoid.

Thus, in the case of a manifold which admits a hyperbolic structure, the maximum of the
(topological or volume) entropy characterizes the Teichmüller space T (M) in G(M). In any
case, we get an entropy function h : G(M) −→ R which takes its values in (0, n− 1]. That leads
to some natural questions:

• what is the infimum of h and is it attained ?
• in the case of a manifold which does not admit any hyperbolic structure, what is the

supremum of h and is it attained ?
• how regular is h ?

Let us now explain the contents of the paper.
We begin by some necessary preliminaries consisting of basic facts and notations. We also spec-
ify the context of the paper and give some motivations.
We then extend in section 3 the dynamical formalism introduced in [22] to our context. In
particular, it allows us to define a notion of curvature in Hilbert geometry, that we prove to be
constant and strictly negative, and to make parallel transport along the orbits of the geodesic
flow, that will be the main tool of the paper.
In section 4, this parallel transport is related to the action of the geodesic flow, that leads to a
new description of the Anosov property. Here the projective flatness of the structures is crucial :
working in the universal covering identified with Ω, we can indeed compare the parallel transport
with respect to the Hilbert metric with the Euclidean one (section 4.4) ; then an acute study
allows us to control the asymptotic behavior of the flow on the tangent space. This part is the
technical core of the paper.
Using ergodic properties of hyperbolic systems and some arguments of symmetry, sections 5
and 6 prove the upper bound in theorem 1.1. Motivations and ideas of the proof appear in the
preliminaries, section 2.4. These sections also give links between these dynamical properties,
namely Lyapunov exponents, the group Γ and the boundary of the convex Ω.
Section 7 explicits the case of equality in theorem 1.1 and provide some complementary facts and
considerations about invariant measures. It also gives a large lower bound for the topological
entropy in terms of regularity of the boundary of the convex.
Finally, the last section extends the results obtained by Manning, which leads to corollary 1.2.

I would like to thank Patrick Foulon for all the interesting and fruitful discussions and ideas,
Constantin Vernicos for his constructive remarks when rereading the paper, Thomas Barthelmé
and Camille Tardif for listening to my (sometimes strange) interrogations, and also Internet
without which Ludovic Marquis, Yves Benoist, François Ledrappier, and Gerhard Knieper could
not have answered my questions. I gratefully thank the referee for his useful comments, that
led to nontrivial improvements.

2. Preliminaries : concepts and notations

2.1. Hilbert geometry.
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2.1.1. Generalities. Hilbert geometries were introduced by David Hilbert as an example for what
is now known as Hilbert’s fourth problem : roughly speaking, characterize the metric geometries
whose geodesics are straight lines. Hilbert geometries are defined in the following way.
Take a properly convex open set Ω of the projective space P

n(R), n ≥ 2, where properly convex
means you can find an affine chart in which Ω appears as a relatively compact convex set. The
Hilbert metric dΩ on Ω is defined by

dΩ(x, y) =
1

2
| log([a, b, x, y])|, x, y ∈ Ω,

where a, b are the intersection points of the line (xy) with the boundary ∂Ω (c.f. Figure 1).
[a, b, x, y] denotes the cross ratio of the four points : if we identify the line (xy) with R ∪ {∞},
it is defined by [a, b, x, y] = |ax|/|bx|

|ay|/|by| .

x

y

a

b

xx−

x+

ξ

Figure 1. The Hilbert distance and the associated Finsler metric

The space (Ω, dΩ) is then a complete metric space ; see [42] for subsequent details.
In general, the metric is not Riemannian but Finslerian : instead of a quadratic form, we only
have a convex norm on each tangent space. Choose an affine chart and a Euclidean metric | . |
on it such that Ω appears as a bounded set of R

n. At the point x ∈ Ω, this norm of a vector
ξ ∈ TxΩ\{0} is given by

(1) F (x, ξ) =
|ξ|
2

( 1

|xx+| +
1

|xx−|
)

,

where x+, x− are the intersections of the line {x + λξ}λ∈R with the boundary ∂Ω (see again
Figure 1). From this formula, we see that F : TM\{0} −→ M has the same regularity as the
boundary ∂Ω. Among all these geometries, those given by ellipsoids are particular : they are
the only cases where the metric F is Riemannian (see [42] for more precise statements), and in
this case, (Ω, dΩ) is nothing else than the Klein model for the hyperbolic space. Thus, a relevant
problem is to compare the space (Ω, dΩ) to standard geometries. In particular, note the two
following opposite results.

Theorem 2.1. • [17] If Ω is C2 with definite positive Hessian then the metric space
(Ω, dΩ) is bi-Lipschitz equivalent to the hyperbolic space H

n.
• [18] [13] [43] (Ω, dΩ) is bi-Lipschitz equivalent to the Euclidean space if and only if Ω is

a convex polytope, that is the convex hull of a finite number of points.

From a different point of view, Benoist also found general conditions on the boundary for (Ω, dΩ)
to be Gromov-hyperbolic ; see [6].
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2.1.2. Geodesics. In any case, the space (Ω, dΩ) is geodesically complete, where by geodesic, we
mean a curve which locally minimizes the distance among all piecewise C1 curves ; indeed, any
straight line is a geodesic. The converse is true if and only if the boundary of every plane section
of Ω contains at most one open segment (see [42]).

2.1.3. Isometries. The subgroup of elements of PGL(n + 1, R) which preserve the convex Ω is
obviously a subgroup of isometries of the space (Ω, dΩ). The converse is false in general (see [19])
and there is no known necessary and sufficient condition for this property to be true. The best
sufficient condition was given in [19] and specified in [42] : when the space is uniquely geodesic,
then Isom(Ω, dΩ) ⊂ PGL(n + 1, R). In particular, this is true when Ω is strictly convex.

2.2. Hilbert geometry on compact manifolds and divisible convex sets. We now con-
sider compact manifolds locally modeled on these geometries : we say that a manifold M
admits a convex projective structure if there exist a properly convex open set Ω and a subgroup
Γ ⊂ PGL(n + 1, R) preserving Ω, such that M = Ω/Γ. The convex set Ω is then said to be di-
visible. This structure identifies the universal covering of M with Ω, and its fundamental group
π1(M) with Γ. Two structures Ω1/Γ1 and Ω2/Γ2 are equivalent if there exists g ∈ PGL(n+1, R)
such that g(Ω1) = Ω2, gΓ1g

−1 = Γ2.
The ellipsoid is once more a particular case of a divisible convex set. As was already noticed by
Ehresmann, this is the only analytic model. In fact, for any divisible convex set which is not an
ellipsoid, there exists some 0 < ǫ < 1 for which ∂Ω is not C1+ǫ. For more properties, especially
about the groups Γ, we refer to the papers of Yves Benoist [7], [5], [8], [9].
Among divisible convex sets, we have to distinguish the strictly convex and the non strictly
convex ones ; indeed, if Ω is divisible by a group Γ then the following are equivalent ([7]) :

• the space (Ω, dΩ) is Gromov-hyperbolic ;
• Ω is strictly convex ;
• the boundary ∂Ω of Ω is C1 ;
• Γ is Gromov-hyperbolic.

From these conditions, we see that all convex projective structures on a given manifold M
are either all strictly convex or all not strictly convex. In this paper, since we want to study
the geodesic flow, we restrict ourselves to manifolds which admit strictly convex projective
structures.

2.3. Geodesic flow. For every strictly convex projective structure on the compact manifold
M , we are able to define the geodesic flow of the Hilbert metric since in this case, there is a
unique geodesic between two points, which is a straight line in any projective chart.
In this paper we study the geodesic flow ϕt defined on the homogeneous bundle

HM = (TM\{0})/R
∗
+,

with projection π : HM −→ M : a point w = (x, [ξ]) ∈ HM is given by a point x ∈ M and a
direction [ξ], where ξ ∈ TM . If w = (x, [ξ]) ∈ HM , then its image ϕt(w) = (xt, [ξt]) is obtained
by following the geodesic leaving x in the direction [ξ] during the time t, that is, the length (for
the Hilbert metric) of the corresponding geodesic curve between x and xt is t ; the direction [ξt]
is the direction tangent to this geodesic at the point xt.
On the universal covering of M , identified with Ω, the geodesic flow ϕ̃t has a very simple inter-
pretation : take a point x ∈ Ω and a direction [xx+] for a point x+ ∈ ∂Ω ; the image ϕ̃t(w)
of w = (x, [xx+]) ∈ HΩ by the geodesic flow is given by (xt, [xtx

+]), where dΩ(x, xt) = t. The
flow ϕt on HM is then obtained by using the covering map p : HΩ −→ HM .

The infinitesimal generator of the geodesic flow is a vector field X defined on HM , that is
a section X : HM −→ THM of the tangent bundle of HM . On HΩ, we thus get a Γ-invariant
vector field X̃ ; since orbits of the flow are lines (the metric is said to be flat), once an affine
chart and a Euclidean structure on it are fixed, there exists a function m : HM −→ R such that
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X̃ = mXe, where Xe denotes the infinitesimal generator of the Euclidean metric on Ω. A direct
computation gives

m(x, [ξ]) = 2

(

1

|xx+| +
1

|xx−|

)−1

= 2
|xx+| |xx−|

|x+x−| ,

so that F (x, ξ)m(x, [ξ]) = |ξ|. This property of flatness and the shape of m will be crucial to
extend some concepts in section 3 despite the lack of regularity.

The geodesic flow of the Hilbert metric was studied by Yves Benoist, who proved the following

Theorem ([7]). Let M = Ω/Γ be a compact strictly convex projective manifold. Then the
geodesic flow of the Hilbert metric on HM is a topologically mixing Anosov flow.

Recall that a C1 flow ϕt : W −→ W generated by X on a compact Riemannian manifold W is
an Anosov flow if there exist a decomposition

TW = R.X ⊕ Es ⊕ Eu,

and constants C,α, β > 0 such that for any w ∈ W and t ≥ 0,

‖dϕt(Zs(w))‖ ≤ Ce−αt, Zs(w) ∈ Es(w),

‖dϕ−t(Zu(w))‖ ≤ Ce−βt, Zu(w) ∈ Eu(w).

Topologically mixing means that for any nonempty open sets U, V ⊂ W , there exists T ≥ 0 such
that for any t ≥ T , ϕt(U) ∩ V 6= ∅.

Such a property was first established by Hadamard [28] in 1898 for the geodesic flow on hyper-
bolic surfaces, and then generalized to Riemannian manifolds of negative curvature by Anosov
in the famous [3]. It is thus a property that is shared by our geometries. Our goal is to study
what dynamically separates Riemannian hyperbolic structures from the others; that is to find
dynamical properties which characterize hyperbolic metrics among the non Riemannian Hilbert
metrics. Benoist made a first step by proving the

Proposition 2.2 ([7], Proposition 6.7). Let M = Ω/Γ be a compact strictly convex projective
manifold. Then the geodesic flow on HM of the Hilbert metric admits no absolutely continuous
invariant measure unless the Hilbert metric is Riemannian.

Recall that a measure µ on a manifold W is said to be absolutely continuous (or smooth) if it is
in the Lebesgue class : if A is a Borel subset of W , then µ(A) = 0 as soon as λ(A) = 0, where
λ denotes a Lebesgue measure on HM . The proposition above will be useful in section 7 to
determine the case of equality in theorem 1.1.

2.4. Topological and measure theoretic entropies. Let ϕt : W −→ W be a flow on a
compact manifold W . For t ≥ 0, we define the distance dt on W by :

dt(x, y) = max
0≤s≤t

d(ϕs(x), ϕs(y)), x, y ∈ W.

For any ǫ > 0 and t ∈ R, we consider coverings of W by open sets of diameter less than ǫ for the
metric dt. Let N(ϕ, t, ǫ) be the minimal cardinality of such a covering. The topological entropy
([1]) of the flow is then the (well defined) quantity

htop(ϕ) = lim
ǫ→0

[

lim sup
t→∞

1

t
log N(ϕ, t, ǫ)

]

.

In a certain sense, it measures how much the system is chaotic. It appears in various and
numerous contexts ; the most celebrated result may be this one, essentially due to Margulis (see
[37], [32]) : if ϕ is a topologically mixing Anosov flow, then the number PT (ϕ) of closed orbits
of length less than T satisfies the following asymptotic equivalent, with h = htop(ϕ) :

PT (ϕ) ∼ e−hT

hT
.
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As an example, the topological entropy of the geodesic flow of a compact hyperbolic manifold
of dimension n ≥ 2 is (n− 1). Our main theorem 1.1 states that this property characterizes the
hyperbolic structures among all strictly convex projective ones.

To prove this theorem, we will make use of certain objects and results that appear in the
ergodic theory of hyperbolic dynamical systems. Here come the motivations for the proof.
Let M denote the set of ϕt-invariant probability measures. To any µ ∈ M is attached a number
hµ called measure-theoretic entropy ; for definition and basic properties, see [32] or [45]. The
variational principle ([25] or [38]) states that

htop(ϕ) = sup
µ∈M

hµ,

and in the case of a topologically mixing C1+ǫ Anosov flow (that is relevant for us), we know
from Bowen [14] and/or Margulis [36] (see also [32]) that there exists a unique measure µBM ,
now known as the Bowen-Margulis measure, such that

hµBM
= htop(ϕ).

On a hyperbolic manifold, the Bowen-Margulis measure of the geodesic flow is the natural
Liouville measure. From proposition 2.2, we know that in the case of a non Riemannian Hilbert
metric, this measure will not be smooth anymore.
Osedelec’s theorem [40] and Pesin-Ruelle inequality [41] give a way to calculate hµBM

: if µ ∈ M
then the set of regular points is of full measure (see definition 5.1 and theorem 5.2) and

(2) hµ ≤
∫

χ+dµ,

where χ+ is the sum of positive Lyapunov exponents. Proposition 5.3 will give a formula for
our Lyapunov exponents which will be sufficient to conclude.

2.5. Volume entropy of Hilbert geometries. We define the volume entropy of a Hilbert
geometry (Ω, dΩ), provided it exists, by

(3) hvol(Ω, dΩ) = lim
r→∞

1

r
log vol(B(x, r)).

It measures the asymptotical exponential growth of the volume of balls. By volume, we mean
the Hausdorff measure associated to the Hilbert metric. Note that, if the convex set is divisible
by a group Γ, this volume is Γ-invariant, giving a volume on the manifold Ω/Γ.
The problem of measuring a volume in a Finsler space was already discussed a lot and we will
not discuss it again. Look at [16] and [2] for instance.

It is not clear when the limit in (3) exists, but some results are already known : as a con-
sequence of theorem 2.1, if Ω is a polytope then hvol(Ω, dΩ) = 0 ; at the opposite, we have
the

Theorem 2.3 ([12]). If ∂Ω is C1,1, that is with Lipschitz derivative, then hvol(Ω, dΩ) = n − 1.

It is conjectured that hvol(Ω, dΩ) ≤ n − 1 for any convex set Ω of dimension n. In [12] the
conjecture is proved in dimension n = 2 and an example is also constructed where 0 < hvol < 1.
Theorem 1.2 will provide numerous examples of convex sets, in any dimension n, whose entropy
satisfies

0 < hvol < n − 1.
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3. Dynamical formalism

To prove the main theorem, we use the dynamical objects introduced by Patrick Foulon in [22]
to study second order differential equations : they provide analogues of Riemannian objects
such as covariant differentiation, parallel transport and curvature for any such equation which
is regular enough.
We want to apply that formalism to our Hilbert geometries, which are more irregular. The goal
of this part is thus to carefully check that these objects are still well defined, and even smooth
in some sense, under some specific assumptions. For more details about this, we refer the reader
to [22] and to the appendix of [23] for an English version.

3.1. Directional smoothness. Assume a smooth vector field X0 is given on a smooth manifold
W . We denote by

• CX0(W ) (or simply CX0) the set of functions f on W such that, for any n ≥ 0, Ln
X0f

exists;
• Cp

X0(W ) (or simply Cp
X0) the set of functions f ∈ CX0 such that, for any n ≥ 0,

Ln
X0f ∈ Cp(W ).

A CX0 (respectively Cp
X0) vector field Z will be a section of W −→ TW which is smooth in

the direction X0, that is, the Lie derivative Ln
X0Z exists (respectively exists and is Cp) for any

n ≥ 0. Equivalently, Z can be locally written as Z =
∑

fiZi where the Zi are smooth vector
fields on W , and fi ∈ CX0 (respectively fi ∈ Cp

X0).

When X0 is a complete vector field, f being in CX0 means that f is smooth all along the orbits
of the flow generated by X0.

Lemma 3.1. Let m ∈ C1
X0 and X = mX0. For any CX0 vector field Z,

(i) LZm ∈ CX0 ;
(ii) for any n ≥ 0, the Lie derivative Ln

XZ = [X[· · · [X,Z] · · · ] is a CX0 vector field.

In some sense, if X = mX0 with m ∈ C1
X0 ,this lemma means that to be smooth with respect to

X is equivalent to being smooth with respect to X0. The proof will make use of the following
improved version of Schwartz’ theorem.

Lemma 3.2. Let f : R
n −→ R be a C1 map. If ∂2f

∂xi∂xj
exists and is continuous then so is ∂2f

∂xj∂xi

and we have ∂2f
∂xj∂xi

= ∂2f
∂xi∂xj

.

Proof of the proposition. (i) Let w ∈ W . Since X0 is smooth, we can find smooth coordinates
(x0, x1, · · · , xn) on a neighbourhood Vw of w such that X0 = ∂

∂x0
and Z =

∑

ziX
i, where

zi ∈ CX(Vw) and Xi = ∂
∂xi

.

Let f ∈ C1
X0 . Then on Vw, we formally have

LX0LZf =
∑

LX0(ziLXif) =
∑

LX0ziLXif +
∑

ziLX0(LXif).

In fact, this expression makes sense. The first term is well defined and in CX0 . The second one
exists from lemma 3.2 ; we even have LX0LXif = LXiLX0f , so that

(4) LX0LZf = LZLX0f +
∑

LX0ziLXif.

We now prove that Ln
X0LZm exists by induction on n. Assume that for some n ≥ 0, we know

that

Ln
X0LZm = mn + LZLn

X0m

for some function mn ∈ CX0. Then

Ln+1
X0 LZm = LX0mn + LX0LZ(Ln

X0m).
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But Ln
X0m ∈ C1

X0 , so that we can apply the preceding result (equation (4)) with f = Ln
X0m to

get that

LX0LZ(Ln
X0m) = LZLn+1

X0 m + g

for some function g ∈ CX0 . We thus have

Ln+1
X0 LZm = mn+1 + LZLn+1

X0 m

with mn+1 = LX0mn + g ∈ CX0 . That proves the first point.

(ii) The Lie derivative Z0
n := LX0Z exists for any n ≥ 0. Let Z0 := Z and (formally) Zn := Ln

XZ
for n ≥ 1. Assume that for some n ≥ 0, Zn exists and can be written

Zn = mnZ0
n + zn

where zn is some CX0 vector field. Then

Zn+1 = [X,Zn] = m[X0,mnZ0
n + zn] − LZnm X0

= m[X0, zn] + mn+1Z0
n+1 + nmnLX0m Z0

n+1 − LZnm X0,

so that

Zn+1 = mn+1Z0
n+1 + zn+1

with zn+1 ∈ CX0 . That proves the second point. �

3.2. Foulon’s dynamical formalism. In what follows, M is a smooth manifold and X a
complete C1 second order differential equation on M , that is, a complete C1 vector field on HM
as defined in [22]. We make the assumption that X = mX0 where

• X0 is a smooth second order differential equation on M ;
• m ∈ C1

X0(HM).

Lemma 3.1 claims that to be smooth with respect to either X or X0 is equivalent, so we will
not make the difference between CX and CX0 functions or vector fields.
We denote by (ϕt)t∈R the flow generated by X. If w ∈ HM , ϕ.w denotes the orbit of w under
the flow ϕt, that is, ϕ.w = {ϕt(w), t ∈ R}. Remark that X and X0 have the same orbits, up to
parametrization. We follow the presentation made in [22].

3.2.1. The vertical distribution and operator. The vertical distribution is the smooth distribution
V HM = ker dπ where π : HM −→ M is the bundle projection. The letter Y will always denote
a CX vertical vector field, and we write Y ∈ V HM . The following lemma is proved in [22] :

Lemma 3.3. Let w0 ∈ HM , Y1, · · · , Yn−1 be vertical vector fields along ϕ.w0 such that, for any
w ∈ ϕ.w0, Y1(w), · · · , Yn−1(w) is a basis of VwHM . Then for any w ∈ ϕ.w0, the family

X(w), Y1(w), · · · , Yn−1(w), [X,Y1](w), · · · , [X,Yn−1](w)

is a basis of TwHM .

This lemma allows us to define the vertical operator as the CX-linear operator such that

vX(X) = vX(Y ) = 0 ; vX([X,Y ]) = −Y.

By CX-linear, we mean that, for any function f ∈ CX ,

vX(fZ) = fvX(Z).

From the very definition, we can check that

(5) vX = mvX0 .
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3.2.2. The horizontal operator and distribution. The horizontal operator HX : V HM −→ THM
is the CX-linear operator defined by

HX(Y ) = −[X,Y ] − 1

2
vX([X, [X,Y ]]).

Lemma 3.1 assures us that this definition makes sense. More precisely, we have

[X,Y ] = m[X0, Y ] − LY mX0

and
[X, [X,Y ]] = m2[X0, [X0, Y ]] + LXm[X0, Y ] − (LXLY m − mL[X,Y ]m)X0.

Since vX = mvX0 , we thus get

(6) HX(Y ) = mHX0(Y ) + LY mX0 +
1

2
LX0mY.

The horizontal distribution hXHM is defined by

hXHM = HX(V HM).

The verticality lemma 3.3 implies that HX is injective, so that we get the continuous decompo-
sition

THM = R.X ⊕ V HM ⊕ hXHM.

By a horizontal vector field h ∈ hXHM , we will mean a CX section h of HM −→ hXHM .

The operators vX and HX exchange V HM and hXHM in the following sense : lemma 3.1 allows
us to consider the compositions vX ◦ HX and HX ◦ vX , and see that for any Y ∈ V HM, h ∈
hXHM ,

(7) vX ◦ HX(Y ) = Y, HX ◦ vX(h) = h.

In particular, remark that any horizontal vector field h can be written h = HX(Y ), for a unique
Y ∈ V HM .

Finally, we can define a pseudo-complex structure

JX : hXHM ⊕ V HM −→ hXHM ⊕ V HM

by setting JX = vX on hXHM and JX = −HX on V HM . Equation (7) gives

JX ◦ JX = −Id|V HM⊕hXHM .

3.2.3. Projections. We associate to the decomposition

THM = R.X ⊕ V HM ⊕ hXHM

the corresponding decomposition of the identity :

Id = pX ⊕ pX
v ⊕ pX

h .

We immediately have that

(8) pX
h = HX ◦ vX .

Moreover,

Lemma 3.4. For any CX vector field Z, we have

pX(Z) = pX0

(Z) − Lv
X0 (Z)(log m)X0;

pX
v (Z) = pX0

v (Z) − 1

2
(LX0 log m)vX0(Z);

pX
h (Z) = pX0

h (Z) + (Lv
X0 (Z)(log m))X0 +

1

2
(LX0 log m)vX0(Z).

In particular, every projection of Z is still a CX vector field.
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Proof. Let Z = aX + Y + h = a0X0 + Y 0 + h0 be the two decompositions of the vector field Z
along ϕ.w. If we note y = vX0(h0) = vX0(Z), we have using (6)

h = HX(vX(Z)) =
1

m
HX(y) = HX0(y) +

1

2m
LX0m y +

1

m
Lym X0.

Thus

h = h0 +
1

2
LX0(log m)y + Ly(log m)X0,

and

Z = (aX + Ly(log m)X0) + (Y +
1

2
LX0(log m)y) + h0 = a0X0 + Y 0 + h0.

Identifying gives the result. �

3.2.4. Dynamical derivation. We define an analog of the covariant derivation along X that we
call the dynamical derivation and denote by DX . It is the CX-differential operator of order 1
defined by

DX(X) = 0, DX(Y ) = −1

2
vX([X, [X,Y ]]), [DX ,HX ] = 0.

In our context, being a CX-differential operator of order 1 means that for any f ∈ CX ,

DX(fZ) = fDX(Z) + (LXf)Z.

Remark that, on V HM , we can write

(9) DX(Y ) = HX(Y ) + [X,Y ].

We can also check that

DX = mDX0

+
1

2
LX0mId.

A vector field Z is said to be parallel along X, or along any orbit, if DX(Z) = 0. This allows us
to consider the parallel transport of a CX vector field along an orbit : given Z(w) ∈ TwHM , the
parallel transport of Z(w) along ϕ.w is the parallel vector field Z along ϕ.w whose value at w
is Z(w) ; the parallel transport of Z(w) at ϕt(w) is the vector Z(ϕt(w)) = T t(Z(w)) ∈ TwHM .
(See section 4 for more details.) Since DX commutes with JX , the parallel transport also
commutes with JX . If X is the generator of a Riemannian geodesic flow, the projection on the
base of this transport coincides with the usual parallel transport along geodesics.

3.2.5. Jacobi endomorphism and curvature. The Jacobi operator RX is the CX-linear operator
defined by

RX(X) = 0, RX(Y ) = pX
v ([X,HX(Y )]), [RX ,HX ] = 0,

RX is well defined thanks to lemma 3.1 and from lemma 3.4, we get that for any CX vector field
Z, RX(Z) is also a CX vector field. Remark that RX commutes with JX . On V HM , we have

(10) RX = m2RX0

+
(1

2
mL2

X0m − 1

4
(LX0m)2

)

Id.

3.3. Applications to Hilbert geometry. Let Ω be a strictly convex subset of RP
n with C1

boundary. Choose an affine chart and a Euclidean metric on it, such that Ω appears as a
bounded set of R

n. On HΩ, we consider the generators X̃ and Xe of the Hilbert and Euclidean
geodesic flows. We have X̃ = mXe, with

m(w) = 2
|xx+| |xx−|

|x+x−| , w = (x, [ξ]).

A direct computation gives that, for any w = (x, [ξ]) ∈ HΩ,

LXem (w) = 2
|xx+| − |xx−|

|x+x−| ; L2
Xem (w) = − 4

|x+x−| , Ln
Xem = 0, n ≥ 3,

so that m ∈ C1
Xe . Thus the formalism we introduced in the last section is relevant in this

situation, Xe playing the role of X0.
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3.3.1. Jacobi endomorphism and curvature. We immediately check that RXe

= 0. Moreover, we
have

Proposition 3.5. Let Ω be a strictly convex subset of RP
n with C1 boundary and X̃ be the

generator of the Hilbert metric on Ω. Then

RX̃ |
V HΩ⊕hX̃HΩ

= −Id|
V HΩ⊕hX̃HΩ

.

This proposition means that, in some sense, such Hilbert geometries have constant strictly
negative curvature. If the boundary of Ω is C2, we get that the flag curvature of (Ω, dΩ) is
exactly −1.

Proof. We have

1

2
mL2

Xem − 1

4
(LXem)2 =

1

2
. 2

|xx+||xx−|
|x+x−| .

−4

|x+x−| −
1

4
.

(

2
|xx+| − |xx−|

x+x−

)2

= −4 |xx+||xx−| + (|xx+| − |xx−|)2
|x+x−|2 = −1.

Using equation (10), we then get RX̃ |
V HΩ⊕hX̃HΩ

= −Id|
V HΩ⊕hX̃HΩ

. �

3.3.2. The Hilbert form of a Finsler metric. The vertical derivative of a C1 Finsler metric F on
a manifold M is the 1-form on TM\{0} defined for Z ∈ T (TM\{0}) by :

dvF (x, ξ)(Z) = lim
ǫ→0

F (x, ξ + ǫdp(Z)) − F (x, ξ)

ǫ
,

where p : TM −→ M is the bundle projection. This form depends only on the direction [ξ]
: it is invariant under the Liouville flow generated by the Liouville field D =

∑

ξi
∂

∂ξi
. As a

consequence, dvF descends by homogeneity on HM to get a 1-form A called the Hilbert form
of F .
Let X be the infinitesimal generator of the geodesic flow of F on HM . Since [dπ(X(x, [ξ]))] = [ξ],
we can define A for any Z ∈ THM by

A(Z) = lim
ǫ→0

F (dπ(X + ǫZ)) − 1

ǫ
.

Remark that A(X) = 1 and that A(Y ) = 0 for any vertical vector field.

When X is smooth, the 2-form dA is well defined and we have

ıXdA = 0 ; ker A = V HM ⊕ hXHM.

The following proposition extends this result to some less regular Hilbert geometries.

Proposition 3.6. Let Ω be a strictly convex subset of RP
n with C1 boundary and A the Hilbert

form of the Hilbert metric F on Ω. Then

(i) ker A = V HΩ ⊕ hX̃HΩ;
(ii) A is invariant under the geodesic flow of the Hilbert metric.

To prove the proposition, we have to make some computations on HΩ, and to make them easier,
we will use some special charts, that we introduce now. Choose a point w = (x, [ξ]) ∈ HΩ with
orbit ϕ̃.w. A chart adapted for this orbit is an affine chart where the intersection Tx+∂Ω∩Tx−∂Ω
is contained in the hyperplane at infinity, and a Euclidean structure on it so that the line (xx+)
is orthogonal to Tx+∂Ω and Tx−∂Ω.

All along this paper, when we talk about a good chart or a chart adapted at w ∈ HΩ or its
orbit ϕ̃.w, we mean such a chart. (See Figure 2)



ENTROPIES OF STRICTLY CONVEX PROJECTIVE MANIFOLDS 13

x
x− x+

ξ

Tx−∂Ω Tx+∂Ω

Figure 2. A good chart at w = (x, [ξ])

In a good chart at w, we clearly have LY m = 0 along ϕ̃.w for any Y ∈ V HΩ. As a corollary of
the following proof, we will get that

dπ(VwHΩ ⊕ hX̃
w HΩ) =

(

xx+
)⊥

,

where orthogonality is taken with respect to the Euclidean metric of the chart.

Proof of proposition 3.6. (i) We only have to prove that hX̃HΩ ⊂ ker A. Let w0 = (x0, [ξ0]) be
any point in HΩ and fix a chart for Ω in R

n which is adapted to w0, and where x0 = 0 is the
origin. Choose a small open neighborhood U of w0 in HΩ. If U is small enough, we can choose
coordinates (x1, · · · , xn, ξ2, · · · , ξn) on U such that :

• w0 = 0 is the origin ;
• for w = (x, [ξ]) ∈ U , the coordinates (x1, · · · , xn) of x are the Euclidean coordinates in

R
n and [ξ] is identified with the vector

ξ = ξ(w) =
∂

∂x1
+

n
∑

i=2

ξi
∂

∂xi
∈ TxΩ,

where the ξi vary in a neighborhood of 0. In other words, [ξ] = [1 : ξ2 : · · · : ξn], where
we make use of homogeneous coordinates on HxR

n.

We use the associated basis
(

∂
∂xi

, ∂
∂ξj

)

1≤i≤n,2≤j≤n
on the tangent space TU ⊂ THΩ. Remark

that all along ϕ̃.w0 ∩ U , we have ξ = ∂
∂x1

.

In this chart, we introduce a new second order differential equation X0 on U by

X0(w) = X0(x, [ξ]) =
∂

∂x1
+

n
∑

i=2

ξi
∂

∂xi
.

In particular, we have X0(w) = ∂
∂x1

along ϕ̃.w0 ∩ U , and dπ(X0(x, [ξ])) = ξ on U . Moreover X̃

can be written as X̃ = kX0, where k is the CX̃ function defined on U by

k(w) =
F (dπ(X0(w)))

F (dπ(X̃(w)))
= F (x, ξ(w)) =

|ξ(w)|
m(x, [ξ])

, w = (x, [ξ]);

Along ϕ̃.w0, we clearly have LY k = 0.

The vertical distribution on U is given by

V U = vect{ ∂

∂ξi
}i∈{2,··· ,n}.
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Since LY k = 0 on ϕ̃.w0, the pseudo complex structure along ϕ̃.w0 given by X0 on V U ⊕ hX0

U
is very simple : we have

∀j = 2, · · · , n, [X0,
∂

∂ξj
] = − ∂

∂xj
, [X0, [X0,

∂

∂ξj
]] = 0,

hence

∀j = 2, · · · , n, vX0(
∂

∂xj
) =

∂

∂ξj
, HX0(

∂

∂ξj
) =

∂

∂xj
,

thus

(11) hX0

U = vect{ ∂

∂xi
}i∈{2,··· ,n}.

Equation (6) can be applied with k instead of m. Any horizontal vector field h ∈ hX̃U along
ϕ̃.w0 can thus be written

(12) h = kHX0(Y ) +
1

2
(LX0k)Y,

for a certain vector field Y ∈ V U . Since A(Y ) = 0, we have A(h) = kA(HX0(Y )) ; so from (11)
we only have to prove that for any i ∈ {2, · · · , n} and w ∈ ϕ̃.w0, A(w)( ∂

∂xi
) = 0. But

A(
∂

∂xi
) = lim

ǫ→0

F (dπ(X̃ + ǫ ∂
∂xi

)) − 1

ǫ
= lim

ǫ→0

F (dπ(X0 + ǫ ∂
∂xi

)) − F (dπ(X0))

ǫ

so that, for w ∈ ϕ̃.w0,

A(w)(
∂

∂xi
) = lim

ǫ→0

F (x, ξ + ǫ ∂
∂xi

)) − F (x, ξ)

ǫ
= D(x,ξ(w))F (

∂

∂xi
),

where we see F as a real valued function on Ω×R
n ⊂ R

2n with coordinates (x1, · · · , xn, ∂
∂x1

, · · · , ∂
∂xn

).

But in our chart, from the formula giving F , we clearly have for any i ∈ {2, · · · , n}, ∂
∂xi

∈ ker DF ,

which proves that hX̃HΩ ⊂ ker A along ϕ̃.w0 ∩ U . But all this can be made for any point w0,

so that hX̃HΩ ⊂ ker A on HΩ.

(ii) Since A(X̃) = 1, to prove that A is invariant under the flow, we only have to prove that its
kernel is invariant, which from the first result is equivalent to proving that

pX̃([X̃, Y ]) = pX̃([X̃, h]) = 0

for any vertical and horizontal vector fields Y and h.

• Since [X̃, Y ] = −HX̃(Y ) + DX̃(Y ), we clearly have pX̃([X̃, Y ]) = 0.

• Now let w0 ∈ HΩ and consider the neighborhood U of w0 that we’ve considered before,

with its coordinates. Along ϕ̃.w0, we have pX̃ = pX0

, hence

pX̃([X̃, h]) = pX0

(k[X0, h] − LhkX0) = kpX0

([X0, h]) − Lhk.

But, in our chart, we also have Lhk = 0 along ϕ̃.w0: this can be seen directly or using
equation (12). Then, if h = HX̃(Y ) and h0 = HX0(Y ), we have, from (12),

pX0

([X0, h]) = pX0

([X0, kh0 +
1

2
(LX0k)Y ]) = kpX0

([X0, h0]) = 0

on ϕ̃.w0.

Finally pX̃([X̃, h]) = 0 on ϕ̃.w0, and thus on HΩ. �
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3.3.3. Hilbert geometry on manifolds. Let Ω be a strictly convex subset of RP
n with C1 bound-

ary, Γ a discrete subgroup of Isom(Ω, dΩ), without torsion, and M = Ω/Γ the quotient manifold.
M inherits a Finsler metric F from the one of Ω. Let X be the generator of the geodesic flow
of F on HM .
Of course, we cannot put a Euclidean structure on M , so there exists no Xe on M . But it
exists locally, since M is locally isometric to Ω and that’s all we need to use Foulon’s dynamical
formalism on M . We then have a decomposition

THM = R.X ⊕ V HM ⊕ hXHM

and a pseudo complex structure JX on V HM ⊕hXHM that exchanges V HM and hXHM . M
has constant strictly negative curvature in the sense that RX |V HΩ⊕hXHΩ = −Id|V HΩ⊕hXHΩ.
If A denotes the Hilbert form of F on M , then

ker A = V HM ⊕ hXHM

and A is invariant under the geodesic flow.

4. Parallel transport and the Anosov property

4.1. Action of the flow on the tangent space. We pick a tangent vector Z(w) ∈ TwHM .
We want to study the behavior of the vector field Z(ϕt(w)) = dϕt(Z(w)) defined along the orbit
ϕ.w. Assume

Z(w) = Y (w) + h(w) ∈ VwHM ⊕ hX
w HM.

Since V HM ⊕ hXHM is invariant under the flow, we can write Z = Y + h. To find the
expressions of Y and h, we write that, since Z is invariant under the flow, the Lie bracket [X,Z]
is 0 everywhere on ϕ.w.
For that, let (h1, · · · , hn−1) be a basis of hXHM of DX-parallel vectors along ϕ.w, that is,
ht

i = hi(ϕ
t(w)) = T t(hi(w)), where T t denotes the parallel transport for DX and (hi(w))i is a

basis of hX
w HM . Since DX and vX commute, the family {Yi} = {vX(hi)} is a basis of V HM of

DX -parallel vectors along ϕ.w. We have immediately hi = HX(Yi) and

(13) [X,Yi] = −hi; [X,hi] = −Yi.

Indeed, since Yi is parallel,

[X,Yi] = DX(Yi) − HX(Yi) = −hi.

To see the second equality, we write

[X,hi] = pX
h ([X,hi]) + pX

v ([X,hi]) + pX([X,hi]).

But since hi is parallel, we have

pX
h ([X,hi]) = HX ◦ vX([X,hi]) = −HX ◦ vX([X, [X,Yi]]) = 2DX(hi) = 0,

and from the preceding proposition, pX([X,hi]) = 0 ; hence

[X,hi] = pX
v ([X,h]) = pX

v ([X,HX(Yi)]) = RX(Yi) = −Yi.

Then, in this basis, Z can be written as

Z =
∑

aihi + biYi,

where ai and bi are smooth real functions along ϕ.w. The formulas (13) give

[X,Z] = 0 ⇐⇒ ∑

(LXai − bi)hi + (LXbi − ai)Yi = 0
⇐⇒ bi = LXai; ai = LXbi, i = 1, · · · , n − 1
⇐⇒ bi = LXai; ai = L2

Xai, i = 1, · · · , n − 1.

From that we get the solution

(14) Z(ϕt(w)) = dϕt(Z(w)) =
∑

Aie
t(ht

i + Y t
i ) + Bie

−t(ht
i − Y t

i ),
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where

Ai =
1

2
(ai(w) + bi(w)), Bi =

1

2
(ai(w) − bi(w))

depend on the initial coordinates of Z at w.

4.2. The Anosov property. Here we give an alternative proof of the Anosov property of the
geodesic flow, which was first proved by Yves Benoist in [7]. Our viewpoint shed some new light
on the dynamics that will be convenient to get our main theorem 1.1.

Let us define the two diagonals Eu and Es by

Eu = {Y + HX(Y ), Y ∈ V HM}, Es = {Y − HX(Y ), Y ∈ V HM} = JX(Eu).

We see from (14) that Eu and Es are invariant under the flow. Furthermore if Zs(w) ∈
Es(w), Zu(w) ∈ Eu(w), then

(15) dϕt(Zu(w)) = etT t(Zu(w)), dϕt(Zs(w)) = e−tT t(Zs(w)).

Theorem 4.1. The geodesic flow ϕt is an Anosov flow with decomposition

THM = R.X ⊕ Es ⊕ Eu,

that is, given a Riemannian metric on HM , there exist constants C,α, β > 0 such that for any
w ∈ HM and t ≥ 0,

‖dϕt(Zs(w))‖ ≤ Ce−αt, Zs(w) ∈ Es(w),

‖dϕ−t(Zu(w))‖ ≤ Ce−βt, Zu(w) ∈ Eu(w).

To prove this theorem, equations (15) above motivate the study of the parallel transport T t along
an orbit : we will thus focus on the exponential behavior of ‖T t(Zu(w))‖ and ‖T t(Zs(w))‖. The
proof of the theorem will be completed in section 4.5.

4.3. Comparison lemma. Here is the key lemma, due to Yves Benoist [7]. We note Eu,s =
Eu ∪ Es.

Lemma 4.2. For any Riemannian metric ‖.‖ on HM , there exists a constant C > 0 such that
for any Z(w) ∈ Eu,s(w),

C−1‖Z(w)‖ ≤ F (dπ(Z(w))) ≤ C‖Z(w)‖.

Proof. Since F : TM → [0,+∞) is a continuous function, so is the function

F ◦ dπ : (Es, ‖.‖) −→ [0,+∞[
u 7−→ F ◦ dπ(u)

Thus its restriction to the compact Es
1 = {u ∈ Es, ‖u‖ = 1} is bounded. Since it is also non

zero, there exists C > 0 such that, for any u ∈ Es
1 ,

1

C
≤ F (x, dπ(u)) ≤ C,

and we conclude the proof using the homogeneity of F . The same works for Eu. �

This lemma gives a way to tackle the problem : we can choose any Riemannian metric on HM ,
and for any Z(w) = Y (w)+h(w) ∈ Eu,s(w), the exponential behavior of ‖T t(Z(w))‖ will be the
same as the one of F (dπ(T t(h(w)))). From now on, we fix a Riemannian metric ‖.‖ on HM .



ENTROPIES OF STRICTLY CONVEX PROJECTIVE MANIFOLDS 17

4.4. Parallel transports on HΩ. We now come back on HΩ to do some more computations.
The Riemannian metric ‖.‖ and the Finsler metric F on HM give Γ-invariant metrics on HΩ,
that we also write ‖.‖ and F . The lemma 4.2 is still valid.

On HΩ we work with two vector fields, namely X̃ and Xe, with X̃ = mXe. T̃ t and T t
e will

denote respectively DX̃ and DXe

parallel transports ; Ẽs, Ẽu and Ẽu,s ⊂ THΩ correspond to
Es, Eu and Eu,s.

Lemma 4.3. If Y (w) ∈ VwHΩ then

T̃ t(Y (w)) =

(

m(w)

m(ϕt(w))

)1/2

T t
e(Y (w)).

Furthermore, in a good chart at w, if h(w) ∈ hX̃
w HΩ then

dπ(T̃ t(h(w))) = (m(w)m(ϕt(w)))1/2dπ(T t
e(h(w))).

Proof. We look for the unique vector field Y along ϕ̃.w such that DX̃(Y ) = 0 and which takes
the value Y (w) at the point w. We recall that

DX̃(Y ) = mDXe

(Y ) +
1

2
LX̃(log m)Y.

Assume we can write Y = fY e, where Y e is parallel for DXe

along ϕ̃.w. Then f is the solution
of the equation

LX̃(log f) +
1

2
LX̃(log m) = 0,

which with f(w) = 1 gives

f(ϕ̃t(w)) =

(

m(w)

m(ϕ̃t(w))

)1/2

.

Finally,

(16) T̃ t(Y (w)) =

(

m(w)

m(ϕ̃t(w))

)1/2

T t
e(Y (w)).

Now, let h(w) ∈ hX̃
w HΩ and h be the parallel transport of h along ϕ̃.w, that is, for t ∈ R,

h(ϕ̃t(w)) = T t(h(w)).

Since JX̃ and the parallel transport commute, the vertical vector field Y = vX(h) defined along
ϕ̃.w is parallel and we have using (9)

h = HX̃(Y ) = −[X̃, Y ] + DX̃(Y ) = −[X̃, Y ]

along ϕ̃.w. Hence, from (16), we have

h = −[X̃, Y ] = −LY m Xe − m [Xe, Y ]

= −LY m Xe − m [Xe, m(w)
m Y e]

= −LY m Xe − (m(w)m)1/2 [Xe, Y e] + m(w)m LXe(m−1) Y e

= −LY m Xe + (m(w)m)1/2 he + m(w)m LXe(m−1) Y e.

In a good chart at w, we have LY m = 0 on ϕ̃.w, so that :

h = (m(w)m)1/2 he + m(w)m LXe(m−1) Y e.

We then get the result since dπ(Y e) = 0. �



18 M. CRAMPON

If f and g are two functions of t ∈ R, f(t) ≍ g(t) will mean that f(t) = O(g(t)) and
g(t) = O(f(t)), that is there exists C > 0 such that C−1|f(t)| ≤ |g(t)| ≤ C|f(t)| for t
large enough.

The following proposition gives a link between the parallel transport and the boundary of Ω. It
will be useful in the next section.

Proposition 4.4. Let Z(w) ∈ Ẽu,s(w). In a good chart at w,

‖T̃ t(Z(w))‖ ≍
(

|xtx
+|1/2

|xty
+
t |

+
|xtx

+|1/2

|xty
−
t |

)

,

where xt = π(ϕ̃t(w)) and y±t are the intersections of the line {xt + λdπ(T̃ tZ(w))}λ∈R with the
boundary ∂Ω. (c.f. Figure 3)

xx− x+

y+

t

y−

t

xt

dπ(Z(w)) dπ(T̃ tZ(w))

Figure 3. Parallel transport on HΩ

Proof. Let choose a good chart at w. We have for Z(w) = Y (w) + h(w) ∈ Ẽu,s(w),

‖T̃ t(Z(w))‖ ≍ F (dπ(T̃ t(h(w))) ≍ |xtx
+|1/2F (dπ(T t

e (h(w))))

from lemma 4.3. But

F (dπ(T t
eh(w))) = |dπ(T t

eh(w))|m−1(dπ(T t
eh(w))) = |dπ(h(w))|m−1(dπ(T t

eh(w))).

Since

m−1(dπ(T t
eh(w))) =

1

2

(

1

|xty
+
t |

+
1

|xty
−
t |

)

,

we get

‖T̃ t(Z(w))‖ ≍
(

|xtx
+|1/2

|xty
+
t |

+
|xtx

+|1/2

|xty
−
t |

)

.

�

4.5. Proof of the Anosov property.

Lemma 4.5. In a good chart at w = (x, [ξ]) we have

|xtx
−|

|xtx+| = e2t |xx−|
|xx+| .
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In particular the following asymptotic expansion holds :

|xtx
+| =

|xx+|2
m(w)

e−2t + O(e−4t).

Proof. From the fact that dΩ(x, xt) = t, a direct calculation yields

xxt =
e2t − 1

1
|xx−| + 1

|xx+|e
2t

,

thus

|xtx
−|

|xtx+| =
|xx−| + |xtx|
|xx+| − |xtx|

=

|xx−| + e2t−1
1

|xx−|
+ 1

|xx+|
e2t

|xx+| − e2t−1
1

|xx−|
+ 1

|xx+|
e2t

=
1 + |xx−|

|xx+|

1 + |xx+|
|xx−|

e2t = e2t |xx−|
|xx+| .

�

We can now follow Benoist’s ideas to get theorem 4.1.

Proof of theorem 4.1. For v ∈ Es, we know from lemma 4.2 that there exists C > 0 such that

‖dϕt(v)‖
‖v‖ ≤ C2 F (dπ(dϕt(v))))

F (dπ(v))
.

Let Es
1 = {v ∈ Es, ‖v‖ = 1} be the set of unit “stable” vectors and

f : Es
1 × R −→ R

the continuous function defined by

f(v, t) =
F (dπ(dϕt(v)))

F (dπ(v))
=

F (dπ(T t(v)))

F (dπ(v))
e−t.

• We first show that, for any v ∈ Es
1, the function f(v, .) is a strictly decreasing bijection

from [0,+∞) to (0, 1].

Indeed, let v ∈ Es
1 and ṽ ∈ Ẽs

1(w) ⊂ TwHΩ such that dp(ṽ) = v, where p : HΩ → HM
is the covering map. Choose a chart adapted to w = (x, [ξ]). In that chart, the vector

dπ(T̃ tṽ) is orthogonal to xtx
+ with respect to the Euclidean structure on the chart;

hence so are xty
+
t

and xty
−
t
. Lemma 4.3 gives

F (dπ(T t(v))) = F (dπ(T̃ t(ṽ))) = (m(w)m(ϕ̃t(w)))1/2F (dπ(T t
e (h)))

= (m(w)m(ϕ̃t(w)))1/2 |dπ(h)|
m(dπ(T t

e (h)))
,

where h denotes the horizontal component of ṽ. Since F (dπ(v)) =
|dπ(h)|

m(dπ(h))
, we get

f(v, t) =
m(w)1/2

m(dπ(h))
e−t (m(ϕ̃t(w)))1/2

m(dπ(T t
e (h)))

.

But

e−t (m(ϕ̃t(w)))1/2

m(dπ(T t
e (h)))

= e−t

(

2
|xtx

+||xtx
−|

|x−x+|

)1/2
1

2

(

1

|xty
+
t |

+
1

|xty
−
t |

)

=
1√
2
e−t

(

1

|x−x+|
|xtx

−|
|xtx+|

)1/2( |xtx
+|

|xty
+
t |

+
|xtx

+|
|xty

−
t |

)

.
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Finally, from lemma 4.5, we get

f(v, t) =
1√
2

m(w)1/2

m(dπ(h))

( |xx−|
|x−x+||xx+|

)1/2 ( |xtx
+|

|xty
+
t |

+
|xtx

+|
|xty

−
t |

)

=
|xx−|

|x−x+|m(dπ(h))

( |xtx
+|

|xty
+
t |

+
|xtx

+|
|xty

−
t |

)

.

The strict convexity of Ω implies that the function h : t 7→ |xtx+|

|xty
+
t |

+ |xtx+|

|xty
−
t |

is strictly

decreasing on [0,+∞) and the C1 regularity of ∂Ω that limt→+∞ h(t) = 0. Thus, the
same holds for f(v, .).

• We now copy Benoist’s proof. Choose 0 < a < 1. From the first point, for any v ∈ Es
1

there is a unique time Ta(v) such that f(v, Ta(v)) = a, that defines a continuous function
Ta : Es

1 → R. Since Es
1 is compact, this function is bounded by some ta > 0, such that

∀t ≥ ta, ∀v ∈ Es
1, f(v, t) ≤ a.

Now, remark that for any v ∈ Es
1 and t, s ≥ 0, f(v, t + s) = f(v, t)f(dϕt(v), s). Thus we

get, for t large enough and any v ∈ Es
1,

f(v, t) ≤ af(dϕt−ta(v), t − ta) ≤ · · · ≤ a[t/ta]f(dϕt−[t/ta ]ta(v), t − [t/ta]ta) ≤ Mae
−αt,

with Ma = max{f(v, t), 0 ≤ t ≤ ta, v ∈ Es
1} < +∞ and α = − log(a)/ta > 0.

That means that for any v ∈ Es,

‖dϕt(v)‖ ≤ C2Mae
−αt‖v‖.

Reversing the time and using JX , we get the result for v ∈ Eu, which completes the proof.
�

5. Lyapunov exponents

5.1. Generalities.

Definition 5.1. Let ϕ = (ϕt) be a C1 flow on a Riemannian manifold W . The point w ∈ W
(or its orbit ϕ.w) is regular if there exists a ϕt-invariant decomposition

TW = R.X + ⊕p
i=1Ei

along ϕ.w and real numbers
χ1(w) < · · · < χp(w),

called Lyapunov exponents, such that, for any vector vi ∈ Ei\{0},

lim
t→±∞

1

t
log ‖dϕt(vi)‖ = χi(w),

and

lim
t→±∞

1

t
log |detdϕt| =

p
∑

i=1

χi(w) dim Ei.

The essential result is the following

Theorem 5.2 (Osedelec’s ergodic multiplicative theorem, [40]). Let ϕ = (ϕt) be a C1 flow on
a compact Riemannian manifold W . For any ϕt-invariant measure, the set Λ of regular points
is of full measure.

Let us come back to our case, and pick a regular point w ∈ Λ ⊂ HM . Obviously, the Lyapunov
decomposition in definition 5.1 will be a subdecomposition of the Anosov decomposition, that
is

THM = R.X ⊕ Es ⊕ Eu = R.X ⊕ (⊕p
i=1E

s
i ) ⊕ (⊕q

j=1E
u
j ).

Since ϕt is an Anosov flow, the Lyapunov exponents are nonzero ; the positive Lyapunov expo-
nents χ+

i will come from the unstable distribution and the negative χ−
i from the stable. The
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following proposition relates the Lyapunov exponents and the parallel transport. Together with
proposition 4.4, we get a link between the Lyapunov exponents and the shape of the boundary
∂Ω.

Proposition 5.3. Let w ∈ Λ be a regular point. The Lyapunov decomposition is given by

THM = R.X ⊕ (⊕p
i=1(E

s
i ⊕ Eu

i )) ,

with Es
i = JX(Eu

i ). Furthermore, the corresponding Lyapunov exponents are given by

χ±
i (w) = ±1 + ηi(w)

where
−1 < η1(w) < · · · < ηp(w) < 1

are the Lyapunov exponents of the parallel transport T t at w.

Proof. Choose Zu
i (w) ∈ Eu

i (w) corresponding to the Lyapunov exponent χ+
i (w). Then, from

equations (15),

χ+
i (w) = χ(w,Zu

i (w)) = lim
t→∞

1

t
log ‖dϕt(Zu

i (w))‖ = 1 + lim
t→∞

1

t
log ‖T t(Zu

i (w))‖ = 1 + ηi(w).

Let us now consider the corresponding stable vector Zs
i (w) = JX(Zu

i (w)) ∈ Es
i (w). We can write

Zu
i (w) = h(w)+Y (w), but then Zs

i (w) = −h(w)+Y (w) and dπ(T t(Zs
i (w))) = −dπ(T t(Zu

i (w))).
Hence

‖T t(Zs
i (w))‖ ≍ F (dπ(T t(Zs

i (w)))) = F (dπ(T t(Zu
i (w)))) ≍ ‖T t(Zu

i (w))‖,
which gives

lim
t→∞

1

t
log ‖dϕt(Zs

i (w))‖ = lim
t→∞

1

t
log(e−t‖dϕt(Zs

i (w))‖)

= −1 + lim
t→∞

1

t
log ‖T t(Zu

i (w))‖ = −1 + ηi(w).

Thus, χ±
i (w) = ±1 + ηi(w). Finally, since the Lyapunov exponents are nonzero, we have

−1 < η1(w) < · · · < ηp(w) < 1.
�

5.2. Shape of the boundary. Here we specify the relation between the Lyapunov exponents
and the boundary ∂Ω. For this we come back to the function

g(t, Z(w)) =

(

|xtx
+|1/2

|xty
+
t |

+
|xtx

+|1/2

|xty
−
t |

)

,

which appears in the proposition 4.4.
We know from [7] that, in our context of a divisible strictly convex set, the metric space (Ω, dΩ)
is Gromov-hyperbolic. Then proposition 1.8 of [6] tells us that

|xty
+
t | ≍ |xty

−
t |

since the points y+
t , x−, y−t , x+ is a harmonic “quadruplet” (see [6] for (here not relevant) details).

Thus,

(17) g(t, Z(w)) ≍ |xtx
+|1/2

|xty
+
t |

.

Assume w is a regular point, choose Zi(w) ∈ Ẽu,s
i (w) and look at the asymptotic exponential

behavior of the function g(t, Zi(w)) : we have

lim
t→∞

1

t
log g(t, Zi(w)) = ηi(w),

that is, for any ǫ > 0 and t large enough,

(18) e(ηi(w)−ǫ)t ≤ g(t) ≤ e(ηi(w)+ǫ)t
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for t large enough.

What does this mean on the boundary ? Let x+, x− be two distinct points on ∂Ω. Choose
an affine chart and a Euclidean metric such that Tx+∂Ω and Tx−∂Ω are parallel and |x+x−| = 1:
we can thus identify a point x ∈ (x+x−) as a real in (0, 1) with x+ = 0, x− = 1.
Given a vector v ∈ Tx+∂Ω, we look at the section of Ω by the plane vect{v,x+x−}, and call
y±(v, x) the distance from x to the boundary points y±(x), intersections of ∂Ω and the line
{x ± λv}λ>0 (see figure 4).
We have the following

Proposition 5.4. Assume the line (x+x−) is the projection of a regular orbit of the flow, with
Lyapunov exponents χ±

i = ±1+ ηi, i = 1 · · · p. Then there exists a decomposition of the tangent
space

Tx+∂Ω = ⊕p
i Hi(x

+),

and constants Cǫ for any ǫ > 0, such that, if vi ∈ Hi(x
+), then

C−1
ǫ x(1+ηi+ǫ)/2 ≤ y±(vi, x) ≤ Cǫ x(1+ηi−ǫ)/2

for small x.

x− x+

y+(x)

y−(x)

x

vv

ξ

Figure 4.

Proof. We first use lemma 4.5 with w = (x, [ξ]), x being the middle point of the segment [x+x−]
and ξ = xx+. We have thus

|xx+| = |xx−| = m(w) =
1

2
,

which gives

xt = |xtx
+| =

1

2
e−2t(1 + o(1)).

Hence

(19) t = log(x
−1/2
t ) + O(1).

Write Fi = dπ(Ẽs
i ), Hi(x

+) = x+ + Fi, and pick vi ∈ Hi(x
+). Note y±t = y±(vi, xt). From (17)

and (18), there exists 0 < C < 1 such that

C−1e(ηi(w)−ǫ)tx
−1/2
t ≤ 1

y±t
≤ Ce(ηi(w)+ǫ)tx

−1/2
t ;

hence, using (19),

D−1x
−(ηi(w)+1)/2+ǫ
t ≤ y±t ≤ Dx

−(ηi(w)+1)/2−ǫ
t ,
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for a constant 0 < D < 1.
�

Remark that when Ω is an ellipsoid, every point is regular and all the ηi are 0 ; −1 and 1 are
the only Lyapunov exponents. In the next section, we see that if Ω is not an ellipsoid, then the
Lyapunov exponents vary from a point to another.

5.3. Lyapunov exponents of a periodic orbit. Every periodic orbit on HM corresponds to
a conjugacy class [γ] in the group Γ. As we know from [7], every such element is biproximal, that
is : if (λi)1≤i≤n are its (non-necessary distinct) eigenvalues ordered as |λ1| ≥ |λ2| · · · ≥ |λn+1|,
then |λ1| > |λ2| and |λn+1| < |λn|. The length of this periodic orbit is given by

lγ =
1

2
(log |λ1| − log |λn+1|).

Let us do the study in dimension 2. Take an element γ ∈ Γ conjugated to the matrix




λ1 0 0
0 λ2 0
0 0 λ3



 ∈ SL3(R)

with λi ∈ R, |λ1| > |λ2| > |λ3|. The line (γ−γ+) is its axis and γ0 its third fixed point. We
look at the picture in the chart given by the plane {x1 + x3 = 0} ⊂ R

3, with the following
coordinates:

γ− = [0 : 0 : 1], γ+ = [1 : 0 : 0], γ0 = [0 : 1 : 0].

This is a good chart for the periodic orbit we are looking at. Choose a point x ∈ (γ−γ+) with
coordinates [a0 : 0 : 1 − a0] where a0 ∈ (0, 1) and let w = (x, [γ−γ+]). The point xn = γn.x is
given by

xn = [an : 0 : 1 − an],

with

an+1 =
λ1an

λ1an + λ2(1 − an)
.

Now, we look at a vector v = xm ∈ γ−γ+⊥
with m = [a0 : b0 : 1 − a0], b0 ∈ R. Let

mn = γn.m = [an : bn : 1 − an], vn = xnmn, so that |vn| = |bn|. Then (bn) is given by

bn+1 =
λ2bn

λ1an + λ2(1 − an)
=

λ2

λ1

an+1

an
bn,

which leads to

bn =

(

λ2

λ1

)n b0

a0
an.

Since limn→∞ an = 1, we get

bn ≍
(

λ2

λ1

)n

.

Let Z(w) ∈ TwHΩ such that dπ(Z(w)) = v. Since γ is an isometry for F , we have, with the
notations of proposition 4.4,

1 ≍ F (x, v) = F (xn, vn) ≍
∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

n 1

|xnγ+|1/2

(

|xnγ+|1/2

|xny+
n |

+
|xnγ+|1/2

|xny−n |

)

≍
∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

n

enlγ‖T nlγ (Z(w))‖,

by using lemma 4.5. Thus

‖T nlγ (Z(w))‖ ≍
∣

∣

∣

∣

λ1

λ2

∣

∣

∣

∣

n

e−nlγ
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and

lim
t→+∞

1

t
log ‖T t(Z(w))‖ = lim

n→∞

1

nlγ
log ‖T nlγ (Z(w))‖ = −1 + 2

log |λ1/λ2|
log |λ1/λ3|

.

All this can be generalized to any dimension by sectioning the convex set, so that we get the
following result.

Proposition 5.5. The Lyapunov exponents (ηi(γ)) of the parallel transport along a periodic
orbit corresponding to γ ∈ Γ are given by

ηi(γ) = −1 + 2
log λ0 − log λi

log λ0 − log λp+1
, i = 1 · · · p,

where λ0 > λ1 > · · · > λp > λp+1 denote the moduli of the eigenvalues of γ. The corresponding
Lyapunov exponents are given by

χ+
i (γ) = 2

log λ0 − log λi

log λ0 − log λp+1
, i = 1 · · · p,

χ−
i (γ) = −2 + 2

log λ0 − log λi

log λ0 − log λp+1
, i = 1 · · · p.

This result was already known by Yves Benoist [7], but stated in another form and context ; he
used it to prove that the geodesic flow is topologically mixing, and to prove proposition 2.2.
Remark that in the case of a hyperbolic structure, we have p = 1 and λ1 = 1, so that η1 = 0.
In fact, we can find a Riemannian metric ‖.‖ on HM for which the parallel transport is an
isometry. In the other cases, the proposition proves that it is not possible anymore.

6. Symmetric considerations

In that section we prove the upper bound in the main theorem 1.1. We already know that the
Lyapunov exponents can be written

χ±
i = ±1 + ηi, i = 1 · · · p.

Thus

χ+ =

p
∑

i=1

dim Ei χ+
i = (n − 1) + η,

where η =
∑p

i=1 dimEi ηi, so that we get from Ruelle inequality

htop ≤ (n − 1) +

∫

HM
η dµBM .

We aim to prove that
∫

HM
η dµBM = 0.

Since the measure µ is ergodic and η is ϕt-invariant, this is equivalent to the fact that η = 0
almost everywhere for µBM . However, as we saw in the section 5.3, η is not identically 0 on Λ
unless Ω is an ellipsoid.

The main remark is that the Hilbert metric is a reversible Finsler metric. The flows ϕt and ϕ−t

are thus conjugated by the flip map

σ : HM −→ HM
w = (x, [ξ]) 7−→ (x, [−ξ]).

which is a C∞ involutive diffeomorphism.

We say that

• a subset A of HM is symmetric if σA = A;
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• a function f : A → R defined on a symmetric set A is symmetric if f ◦ σ = f , antisym-
metric if f ◦ σ = −f .

• a measure µ on HM is symmetric if σ ∗ µ = µ.

Lemma 6.1. (i) The application σ exchanges the stable and unstable foliations.

(ii) The set Λ of regular points is a symmetric set and dσ preserves the Lyapunov decompo-
sition by sending Es

i (w) to Eu
i (σ(w)), for any w ∈ Λ.

(iii) The function η : Λ −→ R is antisymmetric.

(iv) The Bowen-Margulis measure µBM of ϕt is symmetric.

Proof. (i) is well known.
(ii) If w ∈ Λ, then from the very definition 5.1 of a regular point,

lim
t→∞

1

t
log ‖dwϕ−t(Z(w))‖ = − lim

t→∞

1

t
log ‖dwϕt(Z(w))‖ = −χ(w,Z(w)),

for Z(w) ∈ TwHM . Since ϕ−t = σ ◦ ϕt ◦ σ, we thus have

−χ(w,Z(w)) = lim
t→∞

1

t
log ‖dwϕ−t(Z(w))‖ = lim

t→∞

1

t
log ‖dσ(w)ϕ

t(dwσ(Z(w)))‖ = χ(σ(w), dwσ(Z(w))),

which proves that σ(w) is also regular, hence Λ is symmetric. We also get the decomposition

Tσ(w)HM = R.X(σ(w)) ⊕ (⊕p
i (E

s
i (σ(w)) ⊕ Eu

i (σ(w))))

with

Es
i (σ(w)) = dσ(Eu

i (w)), Eu
i (σ(w)) = dσ(Es

i (w)).

(iii) We then have

(20) χ+
i (σ(w)) = −χ−

p+1−i(w),

so that

ηi(σ(w)) = −ηp+1−i(w).

We finally get

η(σ(w)) =

p
∑

i=1

dim Ei(σ(w)) ηi(σ(w)) = −η(w).

(iv) Since ϕt and ϕ−t are conjugated by σ, σ ∗ µBM and µBM are invariant measures of ϕt

and ϕ−t and they have the same entropy. Hence σ ∗ µBM = µBM by unicity of the measure of
maximal entropy. �

This lemma gives the first part of theorem 1.1, that is

Proposition 6.2. Let ϕ be the geodesic flow on the Hilbert metric on a compact strictly convex
projective manifold M of dimension n. Its topological entropy htop(ϕ) satisfies the inequality

htop(ϕ) ≤ (n − 1).

Proof. Since µBM is symmetric and η antisymmetric, we have
∫

η dµBM = 0, which yields

htop(ϕ) = hµBM
≤ (n − 1).

�
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7. Invariant measures and the equality case

7.1. The equality case. Here we deal with the equality case in theorem 1.1. This is closely
related to the equality case in the Ruelle inequality (2), that is : for which measures µ ∈ M do
we have

hµ =

∫

χ+ dµ ?

Ledrappier and Young answered this question in the first part of [34] :

Theorem 7.1 ([34], Theorem A). Let ϕt : W −→ W be a C1+ǫ flow on a compact manifold
W . Then an invariant measure µ has absolutely continuous conditional measures on unstable
manifolds if and only if

hµ =

∫

W
χ+ dµ.

(In the original paper, this is proved for C2 diffeomorphisms, but it extends to our case. See [4]
for a complete presentation.)
From this theorem we can now prove the

Proposition 7.2. htop = n − 1 if and only if the Hilbert metric is Riemannian.

Proof. htop = n − 1 if and only if hµBM
= n − 1, that is the Bowen-Margulis measure satisfies

the equality in the Ruelle inequality. But from theorem 7.1, it is equivalent to the absolute
continuity of its conditional measures on unstable manifolds, that is the absolute continuity of
the Margulis measures µu on strong unstable manifolds : recall that Bowen-Margulis measure
was constructed by Margulis as a local product µs × µu × dt, where the measures µs and µu

were measures on strong stable and strong unstable manifolds with adequate properties (see
[36], [37] or [32] for more details). It follows from the symmetry of this construction that µu is
absolutely continuous if and only if µs is so, that is if and only if µBM is absolutely continuous.
The proposition 2.2 concludes the proof. �

We can add some remarks to this proof and connect it with some well known results in the
ergodic theory of hyperbolic systems. In our context of a topologically mixing Anosov flow,
we indeed know from [15] that there exists only one invariant measure µ+, called the Sinai-
Ruelle-Bowen (SRB) measure, which satisfies the equality in (2). This measure is ergodic and
characterized by any of the following equivalent facts :

• µ+ satisfies the equality in (2) ;
• the conditional measures (µ+)u on unstable manifolds is smooth ;
• the equality

(21) lim
T→∞

1

T

∫ T

0
f(ϕt(x)) dt =

∫

f(x) dµ+(x),

holds for λ-almost every point x ∈ HM .

Reversing the time, we get the SRB measure µ− for ϕ−t, which is equal to µ+ if and only if
one of the two measures is smooth. Roughly speaking, those two measures are the smoothest
invariant measures of the system.
In the case of a hyperbolic geodesic flow, the Bowen-Margulis and the SRB measures (for ϕt and
ϕ−t) coincide with the Liouville measure. This is not true anymore when the Hilbert metric is
not Riemannian: both SRB measures are not smooth anymore and we then get three measures
which are of interest, each one being singular with respect to the others. The two measures µ+

and µ− are related via σ by µ+ = σ ∗ µ− ; hence σ is a smooth diffeomorphism of HM which
sends the measure µ− to the measure µ+ which is singular with respect to µ−.

The function η is invariant under the flow and thus is constant almost everywhere with re-
spect to either of the ergodic measures µBM , µ− and µ+. We have already seen that η was
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zero µBM -almost everywhere. But with respect to µ− or µ+, η is equal to a constant ηSRB < 0
almost everywhere, since we can prove that hµ+ = hµ− and use hµ+ = n − 1 + ηSRB < n − 1.

7.2. A large lower bound for the entropy. We conclude this section by giving a lower bound
for the topological entropy in terms of regularity of the boundary. When Ω is not an ellipsoid,
then the boundary is known to be Cα for a certain α > 1 but the supremum αΩ of such α’s is
stricly less than 2. Equivalently (see [7]), the boundary is β-convex, for a certain β > 2, that is
there exists a constant C > 0, such that, for any p, p′ ∈ ∂Ω,

dRn(p′, Tp∂Ω) ≥ C|pp′|β,

where dRn denotes the Euclidean distance. It was proved by Guichard [27] that the corresponding
infimum βΩ > 2 satisfies

1

βΩ
+

1

αΩ
= 1.

Proposition 7.3. Let M = Ω/Γ, where Ω is not an ellipsoid, and assume ∂Ω is β-convex for
a β ∈ (2,+∞). Then

htop(ϕ) >
2

β
(n − 1).

Proof. The β-convexity of the boundary implies there exists C > 0 such that, for any t ≥ 0,

|xtx
+| ≥ C|yty

+
t |β .

Hence
|xtx

+|1/2

|yty
+
t |

≥ D|xtx
+|1/2−1/β ,

for a certain constant D > 0. Thus any positive Lyapunov exponent χ+
i satisfies

χ+
i = 1 + ηi ≥ 1 + lim

t→∞

1

t
log |xtx

+|1/2−1/β =
2

β
,

from proposition 4.4 and lemma 4.5. Finally, since µ+ satisfies the Ruelle entropy formula (2),
we have

htop(ϕ) > hµ+ ≥ 2

β
(n − 1).

�

8. Volume entropy

On the universal covering M̃ of a compact Riemannian manifold (M,g), we can consider the

volume entropy hvol(g) of (M̃, g), which measures the asymptotic exponential growth of volume

of balls in M̃ :

hvol(g) = lim
r→∞

1

r
log vol(B(x, r)),

where vol denotes the Riemannian volume corresponding to g. In [35], Anthony Manning proved
the following result :

Theorem 8.1. Let htop be the topological entropy of the geodesic flow of g on HM . We always
have

htop ≥ hvol(g).

Furthermore, if the sectional curvature of M is < 0 then

htop = hvol(g).

In his PhD thesis, Daniel Egloff [20] extends this result for some regular Finsler manifolds. Let
us check that Manning’s proof still works in the special case we are dealing with here.
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Proposition 8.2. Let ϕt : HM −→ HM be the geodesic flow of the Hilbert metric on the
strictly convex projective manifold M = Ω/Γ and htop denote his topological entropy. Then

htop = hvol(dΩ).

The proof is similar to the one by Manning and we do not reproduce it here. The only point we
have to check is the following technical lemma that Manning proved using negative curvature.
Here we can compute it directly.

Lemma 8.3. The distance between corresponding points of two geodesics σ, τ : [0, r] → Ω is at
most dΩ(σ(0), τ(0)) + dΩ(σ(r), τ(r)).

x
y

y′x′

m a b

b′
a′

Y ′

Y

Figure 5.

Proof. There are two cases : either σ and τ meet each other or not. Anyway, by joining the point
σ(0) and τ(r) with a third geodesic, we see we only have to prove that the distance between
two different lines going away from the same point (but not necessary with the same speed)
increases.
So suppose c, c′ : R → Ω are two lines beginning at the same point m = c(0) = c′(0). Take two
pairs of corresponding points (a, a′) = (c(t1), c

′(t1)), (b, b
′) = (c(t2), c

′(t2)) with t2 > t1 ≥ 0. We
want to prove that dΩ(a, a′) < dΩ(b, b′). As it is obvious if t1 = 0, assume t1 > 0 and note x, x′

and y, y′ the points on the boundary ∂Ω of Ω such that x, a, a′, x′ and y, b, b′, y′ are on the same
line, in this order. Note also Y = (mx) ∩ (bb′) and Y = (mx′) ∩ (bb′), so that by convexity of
Ω, the six points Y, y, b, b′, y′, Y ′ are different and on the same line, in this order. The two lines
(aa′) and (bb′) meet at a certain point that we can send at infinity by an homography. So we
can assume the two lines are parallel (c.f. figure 5).
Then it follows from Thales’ theorem that

1 > [x, a, a′, x] = [Y, b, b′, Y ′] > [y, b, b′, y′],

so that
dΩ(a, a′) = | log([x, a, a′, x])| < | log([y, b, b′, y′])| = dΩ(b, b′).



ENTROPIES OF STRICTLY CONVEX PROJECTIVE MANIFOLDS 29

�

As a corollary of this proposition and theorem 1.1, we get corollary 1.2.
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