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1 Introduction

The main character of this survey is the geodesic flow of Hilbert geometries.
What is quite well understood is its behaviour on a compact quotient manifold
of a Hilbert geometry defined by a strictly convex set: the geometry has then
some flavour of negatively curved spaces and the flow inherits strong hyperbol-
icity properties. We should keep this example in mind as a motivation when
reading this chapter.
In most of the chapter, we will be interested in those Hilbert geometries which
enjoy some kind of hyperbolicity properties. They are defined by strictly con-
vex open sets with C1 boundary. Indeed, we would like to use techniques and
concepts inspired by hyperbolic geometry. Recall that the Hilbert geometry
defined by the ellipsoid is the Riemannian hyperbolic space.

Hilbert geometries are examples of Finsler geometries. We will constantly
try to give connections between Hilbert geometries and the Riemannian and
Finsler negatively curved worlds, where lots of objects and ideas are similar.
Analogies will be made, differences will be pointed out, either on tools or on
problems and results.
Some proofs are provided when they enlighten the purpose or when they
are not fully available in the literature. Other proofs are omitted or briefly
sketched and references provided.

The contents of this survey explain better how we will talk about the
geodesic flow of Hilbert geometries.
Section 2 is dedicated to basic notions about Finsler and Hilbert geometries,
and also about their geodesic flow. We also collect some facts concerning in-
dividual isometries and subgroups of isometries of Hilbert geometries.
In Section 3, we introduce differential objects which appear to be useful in
the study of Finsler geodesic flows. These objects are fairly general and de-
scribe connections between the geometry and the dynamics of the geodesic
flow. Most of them come from Riemannian geometry and we explain how they
can fit into Finsler and Hilbert geometry.

In sections 4 and 5 we study the geodesic flow of the Hilbert geometries
defined by a strictly convex set with C1 boundary. The goal of Section 4 is to
describe stable and unstable bundles and manifolds and relate them with the
previous objects. In Section 5, we make a more careful study at the infinitesi-
mal level. In particular, we relate the asymptotic exponential behaviour along
an orbit to the shape of the boundary ∂Ω at the extremal point of the orbit.
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I would like to stress that, until this point, no assumption had been made
on the existence of quotients. The previous parts provide thus general tools
which may be useful in the study of any quotient space. They are illustrated
by the last three parts where we study global properties of the geodesic flow
of a compact quotient manifold of a strictly convex Hilbert geometry. Among
these quotients, compact Riemannian hyperbolic manifolds play a very special
role and then can be characterized by various geometrical or dynamical prop-
erties.

In Section 7 we prove that the geodesic flow of a compact quotient of a
strictly convex Hilbert geometry has the Anosov property. This has conse-
quences on the regularity of the boundary of the geometry. We give a first
rigidity result involving the regularity of the boundary.
In Section 8 we get interested in the ergodic theory of the geodesic flow. We
recall some concepts and well known results and questions in Riemannian ge-
ometry and explains then their counterparts, as well as some results, in Hilbert
and Finsler geometry.
Finally, in Section 9, we study various notions of entropies involved in Hilbert
geometry. They allow us to make other connections between geometry and
dynamics.

2 Preliminaries and notations

2.1 Hilbert geometries

A Hilbert geometry is a metric space (Ω, dΩ) where

• Ω is a properly convex open set of the real projective space RPn, n >
2; properly means there exists a projective hyperplane which does not
intersect the closure of Ω, or, equivalently, there is an affine chart in
which Ω appears as a relatively compact set;

• dΩ is the distance on Ω defined, for two distinct points x, y, by

dΩ(x, y) =
1

2
log[a, b, x, y],

where a and b are the intersection points of the line (xy) with the bound-
ary ∂Ω (chosen as in Figure 1) and [a, b, x, y] denotes the cross ratio of
the four points : if we identify the line (xy) with R ∪ {∞}, it is defined

by [a, b, x, y] = |ay|/|by|
|ax|/|bx| .
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Figure 1. The Hilbert distance

2.2 (Regular) Finsler metrics and their geodesic flow

Definition 2.1. A Finsler metric on a manifoldM is a field of (non-necessarily
symmetric) norms on M , that is a function F : TM −→ [0,+∞) such that:

• F (x, λu) = λF (x, u), (x, u) ∈ TM , λ > 0;

• F (x, u+ v) 6 F (x, u) + F (x, v), x ∈M, u, v ∈ TxM .

A Finsler metric defines a (non-symmetric) distance dF on M : the distance
between two points x and y of M is the minimal Finsler length LF (c) of a C1

curve c : [0, 1] −→M from x to y, that is,

dF (x, y) = inf
c
LF (c) = inf

c

∫ 1

0

F (ċ(t)) dt.

We will say that a Finsler metric F is regular if F is C2 and the boundary
of its unit balls B(x, 1) = {u ∈ TxM, F (x, u) < 1}, x ∈ M has positive
definite Hessian (for some (hence any) fixed Euclidean metric on TxM). This
is the minimal assumption we have to make for local geodesics to exist: as in
Riemannian geometry, those are C1 curves defined through a second order dif-
ferential equation. Geodesics have constant speed, that is, F (ċ(t)) is constant,
and if x = c(t) and y = c(t′) are points on the curve which are close enough,
then the curve c : [t, t′] −→M is the shortest path from x to y:

dF (x, y) =

∫ t′

t

F (ċ(s)) ds.
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We say that the Finsler metric is complete if geodesics exist for all times. This
is always the case if the manifold is compact. If the Finsler metric is complete,
we can define the geodesic flow of the metric as the flow of the second-order
differential equation which defines geodesics. In this way, the geodesic flow is
defined on the tangent bundle TM . But, since geodesics have constant speed,
this flow preserves the subbundles

TαM = {u ∈ TM, F (u) = α}, α > 0.

The most natural space to study the geodesic flow is thus the unit tan-
gent bundle T 1M . However, this space depends on the metric, so we will
prefer considering this flow as defined on the homogeneous tangent bundle
HM = TM r {0}/R∗+, identifying it with the unit tangent bundle: a point

of the homogeneous tangent bundle consists of a base point on the manifold
and a tangent direction at this point, that we denote by w = (x, [ξ]); its image
ϕt(w) by the geodesic flow is obtained by following during the time t the unit
speed geodesic leaving x in the direction [ξ].

Geodesic flows are important examples in dynamics, especially when the
manifold is not “too big”, so we can expect strong recurrence properties. For
example, the geodesic flow of a compact negatively-curved Riemannian mani-
fold has strong hyperbolic properties, such as the Anosov property. The main
goal of this chapter is to study this kind of properties for the geodesic flow
of compact quotients of some Finsler geometries, with an emphasis on Hilbert
geometries.

2.3 Hilbert geometries and their isometries

A Hilbert geometry (Ω, dΩ) is an example of a Finsler manifold. The Finsler
norm of u ∈ TxΩ is given by the formula

F (x, u) =
|u|
2

(
1

|xu+|
+

1

|xu−|

)
,

where u± are the intersection points of the line generated by u. It is Rieman-
nian if and only if Ω is an ellipsoid [49], in which case (Ω, dΩ) is the Beltrami
model of the hyperbolic space.

Various volume forms can be associated to a Finsler metric. However, all
natural volumes that could be associated to Hilbert geometries are equiva-
lent (see L. Marquis’ contribution to this volume). So let us fix the volume
VolΩ once and for all as being the Busemann-Hausdorff volume: this is the
Hausdorff measure of (Ω, dΩ); equivalently, it is the volume such that the unit
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Figure 2. The Finsler metric

Finsler ball has the same volume as the Euclidean unit ball.

Our main interest will lie in those Hilbert geometries which have enough
symmetries to admit compact quotients. The rest of this part recalls some
facts about the existence of such quotients.

2.3.1 Regular Hilbert geometries From the formula, we see that F is
regular if the boundary ∂Ω of Ω is C2 with positive definite Hessian1. Geodesics
coincide with projective lines. Thus, it is easy to see the geodesic flow on HΩ:
we just have to follow lines...
However, apart from the case of the ellipsoid, a regular Hilbert geometry has
essentially no quotients:

Theorem 2.2 (É. Socié-Méthou [50]). The isometry group of a regular Hilbert
geometry (Ω, dΩ) is compact, unless Ω is an ellipsoid.

Hence, there is no interesting space where to study their geodesic flows
from a global point of view. That is why we have to consider less regular
Hilbert geometries.

2.3.2 Geodesics For a general Hilbert geometry, geodesics can be defined
metrically: a geodesic segment is a metric isometry c : [0, T ] −→ Ω from R to

1The Hessian is computed in some affine chart eqquiped with a Euclidean metric; its
positive definiteness does not depend on the choice of the chart and the metric. See Section
8.5 for more on this.
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(Ω, dΩ) and a geodesic is an isometry from R to Ω. It is not difficult to see
that projective lines are still geodesics but there might be others, even locally
[22]. This happens as soon as the boundary of the convex set contains two
nonempty open segments which are in a same 2-dimensional subspace but not
in the same supporting hyperplane.

2.3.3 Isometries The automorphism group Aut(Ω) consisting of those pro-
jective transformations preserving Ω is an important subgroup of isometries.
Indeed, we expect Aut(Ω) to be the full isometry group in most cases:

Conjecture. Aut(Ω) = Isom(Ω, dΩ) unless (Ω, dΩ) is symmetric, in which
case Aut(Ω) is a subgroup of index 2 of Isom(Ω, dΩ).

Homogeneous Hilbert geometries are those whose automorphism group acts
transitively. They have been described by M. Koecher and E. B. Vinberg in
the fifties and sixties [37, 51].
Among them, symmetric ones are those which are self-dual. They fall into
three classes: the simplices, the hyperbolic space and the symmetric spaces of
the groups SL(n,K), with K = R,C,H and n > 3 or the exceptional group
E6(−26) (see [24] for example).

The last conjecture is confirmed in some cases:

• for strictly convex sets: it is a consequence of the uniqueness of geodesics
(P. De La Harpe [22]);

• for polytopes: Aut(Ω) = Isom(Ω, dΩ) unless Ω is a simplex, in which
case Aut(Ω) has index 2 in Isom(Ω, dΩ) (P. De La Harpe [22] for the
2-dimensional case, B. Lemmens and C. Walsh [40] for the general case)

• for symmetric Hilbert geometries: A. Bosché [14] proved that Aut(Ω)
has index 2 in Isom(Ω, dΩ).

A careful and general study of Aut(Ω) is made in L. Marquis’ contribu-
tion. In particular, he describes and classifies automorphisms in terms of the
dynamics of their action on Ω.

2.3.4 Divisible Hilbert geometries

Definition 2.3. A quotient M = Ω/Γ of a Hilbert geometry (Ω, dΩ) by a dis-
crete subgroup Γ of Aut(Ω) is called a convex projective manifold (or orbifold
in case Γ has torsion).
A Hilbert geometry (Ω, dΩ) or the convex set Ω is said to be divisible if it
admits a compact quotient by a discrete subgroup of Aut(Ω).
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Remark that by Selberg’s lemma, if Γ < Aut(Ω) has finite type, in particu-
lar when Γ acts cocompactly on Ω, then Γ has a finite index subgroup without
torsion. In this case, the quotient M = Ω/Γ is a smooth manifold and the
group Γ is isomorphic to the fundamental group π1(M) of M via a faithful
linear representation π1(M) −→ SL(n+ 1,R).

Socié-Méthou’s theorem asserts that the hyperbolic space is the only regular
divisible Hilbert geometry. Among homogeneous Hilbert geometries, only the
symmetric ones and their products are divisible [52]. Remark that among sym-
metric Hilbert geometries, the hyperbolic space is the only one to be strictly
convex or with C1 boundary.

Apart from the homogeneous cases, the existence of divisible Hilbert ge-
ometries has been a long-standing question. From a general point of view, the
following dichotomy result of Y. Benoist is essential:

Theorem 2.4 (Y. Benoist [10]). Let (Ω, dΩ) be a divisible Hilbert geometry,
divided by a discrete subgroup Γ < Aut(Ω). The following propositions are
equivalent:

• the convex set Ω is strictly convex;

• the boundary ∂Ω is C1;

• the metric space (Ω, dΩ) is Gromov-hyperbolic;

• the group Γ is Gromov-hyperbolic.

Recall that a geodesic metric space (X, d) is said to be Gromov-hyperbolic
if there is some δ > 0 such that any geodesic triangle xyz ⊂ X of vertices
x, y, z ∈ X is δ-thin, that is, for any point p on the side [xz],

min{d(p, [xy]), d(x, [yz])} 6 δ.

When the metric space is Gromov-hyperbolic for the constant δ, we say it is
δ-hyperbolic.
A finitely-generated group Γ is Gromov-hyperbolic if its Cayley graph with
respect to some finite set of generators is Gromov-hyperbolic for the word
metric. This property does not depend on the generating set, but the constant
δ of hyperbolicity does depend on it.

2.3.5 Strictly convex divisible Hilbert geometries Examples of strictly
convex divisible Hilbert geometries are now available in all dimensions. They
are obtained by deformations of compact hyperbolic manifolds following an
idea of [32].
In low dimensions, examples can be obtained using Coxeter groups. First ex-
amples were provided by these means [33]. Y. Benoist [9] also constructed
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in this way strictly convex divisible Hilbert geometries which are not quasi-
isometric to the hyperbolic space. M. Kapovich [34] found such examples in
all dimensions.
We refer to L. Marquis’ contribution for a deeper study of this question.

Assume M = Ω/Γ is a compact quotient manifold of a strictly convex
Hilbert geometry. Then all elements g ∈ Γ are hyperbolic isometries of (Ω, dΩ),
which means the following:

• g fixes exactly two points x+
g and x−g on the boundary ∂Ω and acts as a

translation (for the Hilbert metric) on the line (x−g x
+
g ), which is called

the axis of g;

• the point x+
g is attractive: for any y ∈ Ω r {x−g }, we have lim

n→+∞
gny =

x+
g ;

• the point x+
g is repulsive: for any y ∈ Ω r {x+

g }, we have lim
n→+∞

g−ny =

x−g .

As elements of SL(n+ 1,R), the elements g ∈ Γ are biproximal: their biggest
and smallest eigenvalues (in modulus) λ0 and λn are simple, that is, the corre-
sponding eigenspaces are 1-dimensional; these eigenspaces are the fixed points
x+
g and x−g ; the translation distance on the axis is 1

2 log λ0

λn
.

Let us end this paragraph with a result about the group Γ which divides
the Hilbert geometry, that will be crucial to deduce dynamical rigidity results.
It reads as

Theorem 2.5 (Y. Benoist [6]). Let (Ω, dΩ) be a strictly convex Hilbert geom-
etry, divided by a discrete subgroup Γ < Aut(Ω). The group Γ is Zariski-dense
in SL(n+ 1,R), unless Ω is an ellipsoid.

Recall that the Zariski-closure of a subgroup Γ of SL(n+1,R) is the small-
est algebraic subgroup G of SL(n+ 1,R) which contains Γ. We then say that
Γ is Zariski-dense in G.
The hypothesis of strict convexity in the last theorem is actually unnecessary,
but the proof in this case is far more involved [8].
This last theorem will be useful through the following characterization of
Zariski-dense subgroups of semisimple Lie groups, which is also due to Y.
Benoist. Let us explain it in the context of the Lie group SL(n+ 1,R).
To each element g in SL(n+ 1,R), we associate the vector

ln(g) = (lnλ0(g), · · · , lnλn(g)) ∈ Rn+1,

where λ0(g) > λ1(g) > · · · > λn(g) denote the moduli of the eigenvalues of g.
For a subgroup Γ of SL(n+ 1,R), let ln Γ = {ln g, g ∈ Γ}.
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Theorem 2.6 (Y. Benoist, [7]). Let Γ be a subgroup of SL(n+ 1,R). If Γ is
Zariski-dense in SL(n+ 1,R), then the subgroup generated by ln Γ is dense in
the subspace {

∑
i xi = 0}.

2.4 The geodesic flow

2.4.1 Definition For general Hilbert geometries, we consider the geodesic
flow ϕt : HΩ −→ HΩ following projective lines. Let X : HΩ −→ THΩ be
the vector field which generates this flow. If we choose an affine chart and a
Euclidean metric | · | on it, in which Ω is a bounded open convex set, then
X can be written as X = mXe, where Xe is the generator of the Euclidean
geodesic flow, because X and Xe have the same orbits. A direct computation
gives

m(w) = 2

(
1

|xw+|
+

1

|xw−|

)−1

= 2
|xw+| |xw−|
|w+w−|

, w = (x, [ξ]) ∈ HΩ,

where w+ (resp. w−) denotes the intersection point of ∂Ω with the ray leav-
ing x in the direction ξ (resp. −ξ). This link between X and Xe, that is, the
flatness of Hilbert geometries, is crucial in extending some differential objects
in Section 3.
The vector field X and the geodesic flow ϕt have the same regularity as the
boundary of Ω.

If M = Ω/Γ is a quotient manifold, the geodesic flow is defined on HM by
projection. To study its (local) properties, we will often work directly on HΩ
where geodesics are lines and computations can be made.
For a compact quotient, we can expect from Y. Benoist’s theorem strong dif-
ferences for the geodesic flow on HM between the strictly convex (with C1

boundary) and non-strictly convex (with non-C1 boundary) cases. We can
give easy illustrations of this difference:

• at a non-C1 point of the boundary, there are asymptotic geodesics whose
distance does not go to 0;

• if I is an open segment in the boundary ∂Ω, the distance between two
geodesic rays ending at some points of I stays bounded.

We do not know much more than these observations in the non-strictly convex
case. On the contrary, more attention has been paid to the strictly convex
case, where the flow happens to exhibit strong hyperbolicity properties. This
chapter is dedicated to this case, that is, the study of the geodesic flow of a
compact quotient M = Ω/Γ with Ω strictly convex (and by Theorem 2.4 its

boundary is of class C1).
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2.4.2 Closed orbits Assume M = Ω/Γ is any quotient manifold of a strictly

convex (with C1 boundary) Hilbert geometry (Ω, dΩ), with Γ a discrete sub-
group of Aut(Ω). We use the same notation on Ω and M , on HΩ and HM .

The orbit of a point w ∈ HΩ is the set ϕ · w = {ϕt(w), t ∈ R}. The orbit
ϕ · w of w ∈ HM is closed if there exists T > 0 such that ϕT (w) = w. The
smallest T > 0 which satisfies this equality is the length of the orbit. We also
say that w is a periodic point and that T is its period.
If G is a group, a non-identity element g of G will be called primitive if there is
no h ∈ G and k > 2 such that g = hk. The same will be said of the conjugacy
class of g in G. For example, if [g] is a free homotopy class in M , that is, the
conjugacy class of an element g in the group π1(M), [g] is primitive if “it does
not make more than one loop”.

A closed orbit on HM lifts to an orbit on HΩ which projects down in Ω
onto an oriented line (x−x+), x−, x+ ∈ ∂Ω, which is left invariant by some
non-identity hyperbolic elements of Γ. Among such elements, which are all
hyperbolic of axis (x−x+), only one is primitive and has x+ as attractive
fixed point and x− as repulsive fixed point. In this way, we can associate to
each closed orbit a primitive hyperbolic element of Γ. Conversely, to such an
element is associated the oriented line (x−x+), which yields a closed orbit of
the geodesic flow. Two such elements will define the same closed orbit if they
are conjugate. Therefore we have the

Proposition 2.7 (see [10], Proposition 5.1). Let (Ω, dΩ) be a strictly convex
Hilbert geometry with C1 boundary and M = Ω/Γ a compact quotient manifold,
where Γ a discrete subgroup of Aut(Ω).
Closed orbits of the geodesic flow on HM are in bijection with conjugacy classes
of primitive hyperbolic elements of Γ.

A closed orbit on HM gives by projection on M a closed geodesic, provided
with an orientation. If g is a primitive hyperbolic element of Γ, the orbits
defined by g and its inverse g−1 project down on the same closed geodesic in
M , the closed orbits differ only by the direction in which they run along the
geodesic.
A direct computation shows that the length of the associated orbit is 1

2 log λ0

λn
,

where λ0 and λn are the moduli of the biggest and smallest eigenvalues of g.

3 Differential objects in Finsler and Hilbert geometries

Given a Riemannian manifold, its geodesic flow benefits a lot from the rich ge-
ometric structure of the manifold, and this can be extended to regular Finsler
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metrics. For less regular Hilbert geometries, this is much more delicate; only
part of the objects can be constructed: these defects can be seen as an expla-
nation for some rigidity results we will present later on.

3.1 The Hilbert 1-form

For a regular Finsler metric, the geodesic flow is the Reeb flow of a 1-form A
called the Hilbert 1-form. This is Proposition 3.2 below. The Hilbert 1-form
is defined via the vertical derivative of the Finsler metric:

Definition 3.1. Let F be a C1 Finsler metric on a manifold M . Denote by
p : TM −→ M and r : TM r {0} −→ HM the canonical bundle projections.
The vertical derivative of F is the 1-form dvF on TM defined by

dvF (x, ξ)(Z) = lim
ε→0

F (x, ξ + εdp(Z))− F (x, ξ)

ε
, (x, ξ) ∈ TM, Z ∈ T(x,ξ)TM.

(3.1)
It descends by homogeneity on HM to give the Hilbert 1-form A of F , that
is,

A = r ∗ dvF.

The definition of A is made possible because the 1-form dvF depends only
on the direction [ξ]: it is invariant under the flow generated by the vector
field D =

∑
ξi

∂
∂ξi

. Let π : HM −→ M denote the bundle projection. Since

dπ(X(x, [ξ])) ∈ [ξ] and F (dπ(X(x, [ξ]))) = 1, we can write

A(Z) = lim
ε→0

F (x, dπ(X − εZ))− 1

ε
.

Proposition 3.2. Let F be a regular Finsler metric on a manifold M and A
its Hilbert 1-form. The generator X of the geodesic flow of F is the unique
solution of

A(X) = 1; dA(X, ·) = 0.

Moreover, the geodesic flow preserves the volume form A∧dAn−1, that we call
the Liouville volume or Liouville measure.

There is another way of seeing A as we we explain in the next section. We
learned this from T. Barthelmé, and more on this question can be found in his
PhD thesis [5]; Arnold’s book [3] is still a good reference for the classical facts
on Hamiltonian dynamics.
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3.2 The Legendre transform

3.2.1 Definition for regular metrics We can see the geodesic flow of a
regular Finsler metric as a Hamiltonian flow by using the Legendre transform.

Definition 3.3. Let F be a regular Finsler metric on a manifold M . The
Legendre transform LF : TM −→ T ∗M is defined by the formula

LF (v)(u) =
1

2

d

dt
|t=0F

2(x, v + tu). (3.2)

For a Riemannian metric, the Legendre transform is linear: for a vector
v ∈ TxM , the Legendre transform of v is the dual 1-form defined by v:

LF (v)(u) = 〈v, u〉, u ∈ TxM.

For a regular Finsler metric, we can see the Legendre transform geometri-
cally in the following way. Let Bx(r) and Sx(r) be the metric ball and sphere
of radius r > 0 of the Finsler norm F (x, .) on TxM . The Legendre transform
LF (v) of a vector v ∈ Sx(r) is then the 1-form such that

LF (v)(v) = F (v)2; kerLF (v) = TvSx(r).

3.2.2 Finsler cometrics

Definition 3.4. A Finsler cometric is a function F ∗ : T ∗M −→ [0,+∞) such
that:

• F ∗(x, λα) = λF ∗(x, α), (x, α) ∈ T ∗M , λ > 0;

• F ∗(x, α+ β) 6 F ∗(x, α) + F ∗(x, β), x ∈M, α, β ∈ T ∗xM .

We will say that a Finsler cometric F ∗ is regular if F ∗ is C2 and the boundary
of its unit coballs have positive definite Hessian.
Its Legendre transform LF∗ : T ∗M −→ TM is defined by

LF∗(v)(u) =
1

2

d

dt
|t=0(F ∗)2(x, v + tu). (3.3)

To a Finsler metric F is naturally associated a Finsler cometric F ∗; this is
the usual dual norm, defined as

F ∗(x, α) = max{α(v), v ∈ Sx(1)}.

If F is regular, the Finsler cometric F ∗ is also regular.

The Legendre transform is then a C1-diffeomorphism from TM to T ∗M
which sends F to F ∗: for all v ∈ v, F ∗(LF (v)) = F (v). Its inverse is the
Legendre transform LF∗ of F ∗. LF is trivially homogeneous of degree 1, that is
LF (λv) = λLF (v), so it defines a map lF from HM to H∗M = T ∗Mr{0}/R∗+,

that we still call the Legendre transform. Its inverse is the map lF∗ .
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3.2.3 The Hilbert 1-form from the Hamiltonian point of view The
cotangent space T ∗M is canonically a symplectic manifold, the symplectic form
ω being given by the exterior derivative of the Liouville form L =

∑
ξidxi.

The geodesic flow on T ∗M is the Hamiltonian flow of the Hamiltonian function
H(x, α) = 1

2 (F ∗(x, α))2: this is the flow generated by the vector field XH such
that

dH(Z) = ω(XH , Z), Z ∈ TTM.

Let S∗M = {u ∈ T ∗M, F ∗(u) = 1} denote the unit sphere bundle of F ∗.
The restriction of the projection T ∗M −→ H∗M to S∗M , is a diffeomorphism
that we denote by pF∗ : S∗M −→ H∗M . Through this map, we can define on
H∗M the 1-form pF∗L, the 2-form pF∗ω and the vector field pF∗XH , which
are the push-forward under pF∗ of the restrictions of L, ω and XH to S∗M .
The 2-form pF∗ω is invariant by the flow of pF∗XH , and the Liouville measure
of this flow is the invariant volume given by pF∗L ∧ (pF∗ω)n−1.

Proposition 3.5. Let F be a regular Finsler metric on a manifold M .
The Hilbert form A, the 2-form dA and the Liouville volume A ∧ dAn−1 are
the respective pullbacks by lF of the Liouville form pF∗L, the symplectic form
pF∗ω, and the volume pF∗L ∧ (pF∗ω)n−1.
The Legendre transform lF also conjugates the flow of pF∗XH on H∗M and
the geodesic flow of F on HM .

3.2.4 General Finsler metrics For a general Finsler metric, the previous
constructions have in general no meaning. Only the Finsler cometric F ∗ is well
defined. Using the geometrical construction, the Legendre transform could also
be seen as a multiple-valued function: for example, to a unit vector v ∈ TxM
where the unit sphere Sx(1) is not C1, the Legendre transform would associate
the set of linear forms α such that α(v) = 1 and whose kernel is one of the
supporting hyperplanes of Sx(1) at v.

If the Finsler metric is C1 with strictly convex unit balls, the unit balls of the
Finsler cometric F ∗ are also strictly convex with C1 boundary. The Legendre
transforms LF and lF are then well defined homeomorphisms through the
geometrical construction, but they are no more of class C1. Thus, even if the
differential forms L, ω and the vector field XH are well defined on T ∗M , as
well as their projections by (the now C1-map) pF∗ on H∗M , we cannot pull
these objects back to HM by the Legendre transform. However, I do not know
if we can define a geodesic flow in this context.
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3.3 Connection and parallel transport

Given a manifold M , there are many ways to identify two distinct tangent
spaces TxM and TyM . If M is the affine space Rn, then the most natural way
is to identify the tangent spaces to the space itself. For a general manifold,
such an identification is called a linear connection: any path c from x to y
gives an identification, that is a linear isomorphism, between TxM and TyM
via parallel transport.

When M is a Riemannian manifold, we would like the linear isomorphisms
to be actual isometries between the tangent spaces. In other words, we want
the Riemannian metric to be parallel. The Riemannian or Levi-Civita con-
nection is the unique linear connection without torsion for which the metric is
parallel.

This construction cannot extend to the regular Finsler context. As we
already said, the good geometrical space for a Finsler metric is the tangent
bundle TM and not the manifold M . A “Finsler” connection should then
be an object defined on TM , which would extend the Levi-Civita connection,
in the sense that this one should be recovered “by projection” in the case of
a Riemannian metric. However, depending on which properties we want the
connection to have (such as no torsion, parallelism of the Sasaki metric), we
will obtain different connections.
A way of avoiding these problems was discovered by P. Foulon: if we restrict
ourselves to transport along geodesics then we get a well defined linear trans-
port. The good space to look at is then HM , and the good object is the
geodesic flow. In this context, we can define in an intrinsic and canonical way
linear objects generalizing the Riemannian ones.

Foulon’s contribution appeared in [25], but one can find a shortest version
in English in [27]. Here, we just describe the conclusions, which apply in
general for C3 regular Finsler metrics.
The vertical bundle of HM is the bundle V HM = ker dπ, where π is the
canonical bundle projection π : HM −→ M . The tangent bundle to HM
admits then a horizontal-vertical decomposition as

THM = R ·X ⊕ hFHM ⊕ V HM. (3.4)

(The vector field X is the generator of the geodesic flow.) Furthermore, there
is a pseudo-complex structure on hFHM ⊕ V HM which exchanges vertical
and horizontal subspaces; that is, a bundle isomorphism

JF : hFHM ⊕ V HM −→ hFHM ⊕ V HM
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such that

JF (V HM) = hFHM,JF (hFHM) = V HM and JF ◦ JF = −Id.

Associated to this decomposition is a “partial” covariant derivative DX which
defines the differential of a vector field Z defined along an orbit of the geodesic
flow in the direction of the flow. This is a differential operator of order 1
DX : THM −→ THM which commutes with JF , and satisfies DX(X) = 0.
A vector field Z defined along an orbit of the flow is parallel if DX(Z) = 0.
This allows us to define the parallel transport of a vector Z(w) ∈ TwHM
along the orbit ϕ · w of w: it is the unique parallel vector field Z defined
on ϕ · w whose value at w is Z(w). If we fix a t ∈ R, we will denote by
T t(Z(w)) := Z(ϕt(w)) the parallel transport of Z(w) during the time t. This
yields a bundle isomorphism T t : THM −→ THM which sends TwHM on
Tϕt(w)HM .
Since DX commutes with JF , the parallel transport T t also commutes with
JF and, since and X is parallel, it preserves the decomposition THM =
R ·X ⊕ hFHM ⊕ V HM .
The projection dπ : THM −→ TM induces an isomorphism between the
space R ·X(w)⊕ hFHM(w) and Tπ(w)M for each w ∈ HM , so we can define
a parallel transport along geodesics on M . Let c : R −→M be a geodesic and
x = c(0), w = [ċ(0)] ∈ HM . If u ∈ TxM , we consider its lift U(w) = dπ−1(u)
to R · X(w) ⊕ hFHM(w), and define the parallel transport of u along the
geodesic c by

T tc (u) = dπ(T t(U(w))), t ∈ R.

This gives a linear isomorphism T t between the tangent spaces TxM and
Tc(t)M .

3.4 Curvature and Jacobi fields

The Jacobi operator RF is defined by

RF (X) = 0, RF (Y ) = pFv ([X, JF (Y )]), RF commutes with JF ,

where pFv (Z) denotes the projection on the vertical subspace V HM of the
vector Z ∈ THM , with respect to the horizontal-vertical decomposition 3.4.
In the case X is the geodesic flow of a Riemannian metric g on M , the Jacobi
operator allows to recover the curvature tensor Rg of g: for u, v ∈ TxM r {0},
we have

Rg(u, v)u =
dπ(RFV (x, [u]))

g(u, u)
,



18 Mickaël Crampon

where V (x, [u]) is the unique vector in R ·X(x, [u])⊕ hFHM(x, [u]) such that
dπ(V (x, [u])) = v.

Definition 3.6. We will say that a regular Finsler manifold (M,F ) is nega-
tively curved if the Jacobi operator RF is negative definite.

A Jacobi field is a vector field J on HM which satisfies

DXDXJ +RFJ = 0.

Jacobi fields form a 2(2n−1)-dimensional vector space, which is JF -invariant.
In the Riemannian case, one recovers the usual Jacobi fields by projection on
the base. Jacobi fields on HM do not contain more information than the ones
on M , the projection only rubs out the JF -symmetry between horizontal and
vertical subspaces, as for the tensor curvature.

3.5 Metrics on HM

For a Riemannian metric g on M , there is a canonical associated Riemannian
metric on HM called the Sasaki metric. To define it, we use the Levi-Civita
connection THM = R ·X⊕V HM⊕hgHM and do the following construction.

• The decomposition THM = R · X ⊕ V HM ⊕ hgHM is orthogonal for
the Sasaki metric.

• Each subspace R · X(u) ⊕ hguHM is isomorphic to the tangent space
Tπ(u)M of M via the projection π; the quadratic form on R · X(u) ⊕
hgHM(u) is defined as the pullback of gπ(u) by π.

• Vertical and horizontal subspaces are identified by the complex structure
Jg; the quadratic form on VuHM is the push-forward by Jg of the
quadratic form on hguTM .

By construction, the Sasaki metric is invariant by the pseudo-complex struc-
ture, and vertical and horizontal subspaces are isometric.

There are different ways of extending this definition to the Finsler context.

Usually, Finsler geometers consider the following generalization for regular
Finsler metrics. The Sasaki metric on HM associated to a regular Finsler
metric F on M is the Riemannian metric gF defined by

gF(x,[u])(Y, Y
′) = Hess(x,u)(F

2)(Y, Y ′), Y, Y ′ ∈ V HM,

where u is the unit vector in [u], and

gF (X,X) = 1, gF (h, h′) = gF (JF (h), JF (h′)), h, h′ ∈ hFHM.
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Equivalently, the formula on V HM can be replaced by

gF (Y, Y ′) = dA([X,Y ], Y ′), Y, Y ′ ∈ V HM,

where A is the Hilbert 1-form introduced above.

Another way would be the following, but this would yield a Finsler metric
on HM : we let, for Z = aX + Y + h,

‖Z‖ =
(
|a|2 + (F (dπh))2 + (F (dπJFY ))2

)1/2
.

When the metric is Riemannian, we recover the Sasaki metric. When the
metric is Finsler, this metric is only a Finsler metric (except for surfaces),
whose regularity is one less than the original one. The complex structure is
still an isometry between vertical and horizontal subspaces.
In fact, I do not think the metric ‖ ·‖ was already considered before. However,
the first construction does not make sense for non-regular Finsler metrics and
that is the reason why we consider the second one. In particular, we will use
this second metric to study non-regular Hilbert geometries.

3.6 The case of Hilbert geometries

The above constructions work in general for at least C3 regular Finsler metrics.
It is however possible to exploit the flatness of Hilbert geometries to extend this
formalism to the case where the convex set is strictly convex with C1 boundary.
Choose an affine chart adapted to the properly convex set Ω ⊂ RPn and fix
a Euclidean metric on it. Denote by Xe : HΩ −→ HΩ the generator of the
Euclidean geodesic flow. The crucial thing is the link X = mXe which exists
between the geodesic flow of the Hilbert and the Euclidean metrics and the
fact that m and its first derivatives are smooth in the direction of the flow(s).
We can find details in [20].
It allows us to use freely Foulon’s dynamical formalism, that is the objects
defined in sections 3.3 and 3.4. For example, we can prove the following
proposition, which is immediate for regular metrics by using the differential
dA of the Hilbert form:

Proposition 3.7 ([20]). Let Ω be a strictly convex subset of RPn with C1

boundary and A the Hilbert form of the Hilbert metric F on Ω. Then

(i) kerA = V HΩ⊕ hFHΩ;

(ii) A is invariant under the geodesic flow.

A general result linking RX and RX
e

and a direct computation prove that
such Hilbert geometries have constant curvature −1:
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Proposition 3.8. Let Ω be a strictly convex subset of RPn with C1 boundary.
The Jacobi endomorphism of the Hilbert geometry (Ω, dΩ) is

RF = −Id

on hFHΩ + V HΩ.

However, the interpretation of such a result is not the same as in Rie-
mannian geometry. We should not forget that the good geometrical space in
Finsler geometry is the tangent bundle and not the manifold.
Perhaps, the main consequence of this fact (at least in the context of this
chapter) is an explicit computation of Jacobi fields:

Lemma 3.9. Let (Ω, dΩ) be a Hilbert geometry defined by a strictly convex set
with C1 boundary. Let w ∈ HΩ, and Jw ∈ V HΩ + hFHΩ. Then the Jacobi
field J along the orbit of w such that J(w) = Jw and DXJ(w) = ±Jw is given
by

J(ϕtw) = e±tT tJw.

This describes the behaviour of all Jacobi fields since for any Zw, Z
′
w ∈

THΩ, we can write

Zw = λX(w) + Z+
w + Z−w , Z

′
w = λ′X(w) + Z+

w − Z−w ,

with

Z+
w =

Zw + Z ′w
2

, Z−w =
Zw − Z ′w

2
.

Hence the Jacobi field J along the orbit of w such that J(w) = Zw and
DXJ(w) = Z ′w will be given by

J(ϕtw) = (λ′t+ λ)X(ϕtw) + etT tZ+
w + e−tT tZ−w .

4 Stable and unstable bundles and manifolds

We assume in this section that the convex set Ω which defines the Hilbert
geometry is strictly convex with C1 boundary. The geodesic flow ϕt : HΩ −→
HΩ is then a C1 flow. We want to study the (spatially infinitesimal) behaviour
of the geodesic flow on the manifold HΩ equipped with the Finsler metric ‖ · ‖
introduced in Section 3.5. We denote by dHΩ the metric induced by ‖ · ‖ on
HΩ.
Even if we will only consider compact quotients in the other sections, we do
not make here any assumption on the existence of a quotient manifold, aiming
to provide objects and results that could be useful for more general quotients.
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4.1 Busemann functions and horospheres

The Busemann function based at ξ ∈ ∂Ω is defined by

bξ(x, y) = lim
p→ξ

dΩ(x, p)− dΩ(y, p),

which, in some sense, measures the (signed) distance from x to y in Ω as seen
from the point ξ ∈ ∂Ω. A particular expression for b is given by

bξ(x, y) = lim
t→+∞

dΩ(x, γ(t))− t,

where γ is the geodesic leaving y at t = 0 to ξ. When ξ is fixed, then bξ is a sur-
jective map from Ω×Ω onto R. When x and y are fixed, then b.(x, y) : ∂Ω→ R
is bounded by a constant C = C(x, y).

The horosphere passing through x ∈ Ω and based at ξ ∈ ∂Ω is the set

Hξ(x) = {y ∈ Ω, bξ(x, y) = 0}.

Hξ(x) is also the limit when p tends to ξ of the metric spheres S(p, dΩ(p, x))
about p passing through x. In some sense, the points on Hξ(x) are those which
are as far from ξ as x is.
The (open) horoball Hξ(x) defined by x ∈ Ω and based at ξ ∈ ∂Ω is the
“interior” of the horosphere Hξ(x), that is, the set

Hξ(x) = {y ∈ Ω, bξ(x, y) > 0}.

It is easy to see that horospheres have the same kind of regularity as the
boundary of Ω.

A consequence of (the proof of) Proposition 3.7 is the following

Corollary 4.1. Let w = (x, [ξ]) ∈ HΩ, w± = ϕ±∞(w) ∈ ∂Ω and ξ the unit
vector in [ξ]. The projection dπ(V HΩ + hFHΩ) is the tangent space at x to
both Hw+(x) and Hw−(x) and the tangent space at ξ to the unit sphere of
F (x, .) in TxΩ.

4.2 Stable and unstable bundles and manifolds

Recall the

Definition 4.2. The stable set of w ∈ HΩ is the set of points v ∈ HΩ such
that lim

t→+∞
d(ϕtw,ϕtv) = 0. The unstable set is the set of points v ∈ HΩ such

that lim
t→−∞

d(ϕtw,ϕtv) = 0.
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Knowing a bit of hyperbolic geometry, it is not difficult to “find” what
should be the stable and unstable sets of a point w = (x, [ξ]) ∈ HΩ. Because
d > dΩ ◦ π, we see that the extreme point of the orbit of a point v ∈ W s(w)
must coincide with the one for w, that is v+ = w+. Moreover, the C1 regularity
of the boundary ∂Ω implies that the horosphere Hw+(π(w)) about w+ through
π(w)

Hw+(π(w)) = π
(
{v ∈ HΩ, dΩ(π(ϕt(w)), π(ϕt(v)) = 0}

)
.

Thus, the stable set of w has to be a subset of the set W−(w) defined as the set
of points v such that v+ = w+ and whose projection π(v) is on the horosphere
through w about w+:

W−(w) = {v ∈ HΩ | v+ = w+, π(v) ∈ Hw+(π(w))}.

Similarly, the unstable set of w has to be a subset of the set

W+(w) = {v ∈ HΩ | v− = w−, π(v) ∈ Hw−(π(w))}.

Figure 3. The submanifolds W+(w) and W−(w), w = (x, [ξ])

Both sets W−(w) and W+(w) are C1 submanifolds of HΩ. The sets
W−(w), w ∈ HΩ, foliate HΩ, as well as the sets W+(w); in general, these
foliations are only C0. We will refer to them as the − and + foliations.
We immediately see that both foliations are invariant under the geodesic flow:

W−(ϕt(w)) = ϕt(W−(w))and W+(ϕt(w)) = ϕt(W+(w)).

The rest of this section is dedicated to prove the following



The geodesic flow of Finsler and Hilbert geometries 23

Theorem 4.3. Let w ∈ HΩ. The sets W−(w) and W+(w) are the stable and
unstable sets of w. The unstable and stable tangent bundles are given by

Eu = {Y + JF (Y ), Y ∈ V HΩ}

and

Es = {Y − JF (Y ), Y ∈ V HΩ} = JF (Eu).

4.2.1 A temporary Finsler metric Let E− and E+ be the tangent bundles
to the − and + foliations. These bundles define a ϕt-invariant decomposition
of the tangent bundle

THM = R ·X ⊕ E− ⊕ E+.

Corollary 4.1 implies that E− ⊕ E+ = V HΩ + hFHΩ.

We define a temporary Finsler metric ‖ · ‖± by

‖Z‖± =
(
|a|2 + 4(F (dπZ+)2 + F (dπZ−)2)

)1/2
.

It is not difficult to see that W+(w) and W−(w) are the stable and unstable
sets of w for this metric: this is what Corollary 4.5 below asserts.

We first need to make a little computation. To simplify this computation,
we will use the projective nature of our objects and choose a good affine chart
and a good Euclidean metric on it.
Let w = (x, [ξ]) ∈ HΩ. A good chart at w is an affine chart where the in-
tersection Tw+∂Ω ∩ Tw−∂Ω is contained in the hyperplane at infinity, and a
Euclidean structure on it so that the line (xw+) is orthogonal to Tw+∂Ω and
Tw−∂Ω (see Figure 4).

Lemma 4.4. Let w ∈ HΩ, Z− ∈ E−(w) and fix a good chart at w. Set
x = π(w), xt = πϕt(w), z = π(Z−), zt = dπdϕt(Z−). We have

‖dϕt(Z−)‖± = 2F (zt) =
|z|
|xw+|

(
|xtw+|
|xtz+

t |
+
|xtw+|
|xtz−t |

)
.

Proof. We have ‖dϕt(Z−)‖± = 2F (zt) by definition of the metric ‖ · ‖±. Now,
by definition of F , we get

F (zt) =
|zt|
2

(
1

|xtz+
t |

+
1

|xtz−t |

)
,

where z+
t and z−t are the intersection points of the line {xt + λzt, λ ∈ R} and

∂Ω (see Figure 5). Consider the map

ht : y ∈ Hw+(x) 7−→ yt = πϕt(y, [yw+]) = (yw+) ∩Hw+(xt).
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Figure 4. A good chart at w = (x, [ξ])

We see that zt is given by

zt = dht(z) =
|xtw+|
|xw+|

z.

This gives the result.

We have a similar result for Z+ ∈ E+(w). If Z+ ∈ E+(w), with the same
notation, we have

‖dϕt(Z+)‖± = F (zt) =
|z|

2|xw−|

(
|xtw−|
|xtz+

t |
+
|xtw−|
|xtz−t |

)
. (4.1)

The strict convexity of the convex set and the C1 regularity of its boundary
now yield the following

Corollary 4.5. Let Z− ∈ E−, Z+ ∈ E+. The map t 7−→ ‖dϕtZ−‖±
is a strictly decreasing bijection from R onto (0,+∞), and the map t 7−→
‖dϕtZ+‖± is a strictly increasing bijection from R onto (0,+∞).
In particular, W−(w) and W+(w) are the stable and unstable sets of w for the
metric ‖ · ‖±.

We will prove in the sequel that this metric actually coincides with the
metric ‖ · ‖.

4.2.2 Identification of stable and unstable bundles for the metric ‖·‖
For a Riemannian or regular Finsler manifold M of variable negative curva-
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Figure 5. Contraction of stable vectors

ture, the construction of stable and unstable manifolds is achieved through the
understanding of Jacobi fields, via the following fact: for any Zw ∈ TwHM ,
the vector field Z defined along the orbit of w by Z(phtw) = dϕtZw is a Jacobi
field.
This observation stays valid in Hilbert geometry and, as we have seen, the
behaviour of Jacobi fields is easy to understand via parallel transport. In this
way, we can identify the stable and unstable bundles in terms of the differential
objects of Section 3. They are given by

Eu = {Y + JF (Y ), Y ∈ V HM}, Es = {Y − JF (Y ), Y ∈ V HM} = JF (Eu),

as asserts the next

Proposition 4.6. Let Zs ∈ Es, Zu ∈ Eu. The map t 7−→ ‖dϕtZs‖ is a
strictly decreasing bijection from R onto (0,+∞), and the map t 7−→ ‖dϕtZu‖
is a strictly increasing bijection from R onto (0,+∞).

To prove this proposition, we need some preparatory observations.

We have THM = R ·X ⊕Eu ⊕Es and this decomposition is ϕt-invariant.
As said above, for any Zw ∈ TwHM , the vector field Z defined along ϕ · w
by Z(ϕtw) = dϕtZw is a Jacobi field. Furthermore, if Zuw ∈ Eu(w), we have
DX(Zu)(w) = Zuw, and Proposition 3.9 implies that

dϕt(Zu) = etT tZu. (4.2)
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If Zsw ∈ Es(w), we have DX(Zs)(w) = −Zsw and

dϕt(Zs) = e−tT tZs. (4.3)

To understand the behaviour of ‖dϕt(Zu)‖ and ‖dϕt(Zs)‖, Zu ∈ Eu, Zs ∈ Es,
we have to understand the behaviour of ‖T tZs‖ and ‖T tZu‖. Here is the big
difference with the regular Finsler or Riemannian case. In these last cases,
the parallel transport preserves the Sasaki metric. For the Hilbert geometries
under consideration, the parallel transport does not preserve the metric ‖ · ‖.
In fact, we could prove the

Proposition 4.7. Let (Ω, dΩ) be a Hilbert geometry defined by a strictly convex
set with C1 boundary. The following propositions are equivalent:

• the boundary of the convex set is C2 with definite positive Hessian;

• for any w ∈ HΩ, there exists C > 0 such that

C−1‖Z‖ 6 ‖T tZ‖ 6 C‖Z‖, Z ∈ TwHΩ.

To understand the parallel transport, we compare it with the parallel trans-
port of the Euclidean structure.
Fix an affine chart and a Euclidean metric | · | on it, in which Ω appears as a
bounded open convex set. Denote by Xe : HΩ −→ THΩ the generator of the
Euclidean geodesic flow. Recall that X = mXe.
Let w ∈ HM and pick a vertical vector Y (w) ∈ VwHM . Denote by Y and Y e

its parallel transports with respect toX andXe along ϕ·w. Let h = JF (Y ) and
he = JX

e

(Y e) be the corresponding parallel transports of h(w) = JF (Y (w))
and he(w) = JX

e

(Y e(w)) along ϕ · w. The main result is the following

Lemma 4.8. Along the orbit ϕ · w, we have

Y =

(
m(w)

m

)1/2

Y e.

and

h = −LYm Xe + (m(w)m)1/2 he − m(w)

m
LXem Y e.

Now, we can complete a

Proof of Proposition 4.6. Consider the vector Z(w) = Y (w) +h(w) = Y (w)−
JF (Y (w)) ∈ Es(w). We use the notation of Proposition 4.4 and its proof. In
a good chart at w, LYm = 0 along the orbit ϕ · w, hence

‖T tZ(w)‖ = F (dπ(T th(w))) = (m(w)m(ϕt(w)))1/2F (dπ(he(ϕt(w))),
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where he is as above. From Corollary 4.1 and the fact that hFHΩ + V HΩ =
Es + Eu, the vector dπ(T t(h(w))) is in Txt

Hϕt(w). The Euclidean paral-
lel transport preserves the Euclidean metric so one have |dπ(he(ϕt(w))| =
|dπ(he(w))| = |dπ(h(w))|. Keeping the same notation (see Figure 6), these
two observations give

‖T tZ(w)‖ = (m(w)m(ϕt(w)))1/2 |dπ(h(w))|
2

(
1

|xtz+
t |

+
1

|xtz−t |

)
= C(w)

(
|xtw+|1/2

|xtz+
t |

+
|xtw+|1/2

|xtz−t |

)
,

for some constant C(w) > 0. This equality is similar to the one in Lemma 4.4.
The strict convexity of the convex set and the C1 regularity of its boundary
conclude the proof.

Figure 6. Action of the parallel transport

4.2.3 Both constructions coincide We will now conclude the proof of The-
orem 4.3, through the

Proposition 4.9. Let (Ω, dΩ) a Hilbert geometry defined by a strictly convex
set with C1 boundary. We have Es = E−, Eu = E+ and ‖ · ‖ = ‖ · ‖±.

I do not know a simple proof of this fact. If the geometry is divisible, then
the following lemma concludes:
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Lemma 4.10. If ‖ · ‖ and ‖ · ‖± are bi-Lipschitz equivalent on HΩ, then
Es = E−, Eu = E+ and ‖ · ‖ = ‖ · ‖±.

Proof. Pick a vector Z ∈ E−, decompose it with respect to Es ⊕Eu, and use
Corollary 4.5 and Proposition 4.6 to conclude.

Otherwise, we can do as follows. For related material concerning Benzécri’s
theorem and Gromov-hyperbolic Hilbert geometries, we should have a look at
Section 9 in L. Marquis’ contribution.

Proof of Proposition 4.9. Let

X = {(Ω, x), x ∈ Ω}

and

X ′ = {(Ω, x) ∈ X, Ω is strictly convex with C1 boundary}.

For δ > 0, let

Xδ = {(Ω, x) ∈ X, the Hilbert geometry (Ω, dΩ) is δ − hyperbolic}.

Finally, let

Xh =
⋃
δ>0

Xδ

be the set of Gromov-hyperbolic Hilbert geometries (see Section 2.3.4 for the
definition of Gromov-hyperbolicity).
The space X is equipped with the topology induced by the Gromov-Hausdorff
distance on subsets of RPn on the Ω-coordinate, and the topology of RPn for
the x-coordinate. The subsets X ′, Xh, Xδ inherit the induced topology.
We have Xδ ⊂ Xh ⊂ X ′ for any δ > 0. The space Xh contains all (Ω, x) such
that (Ω, dΩ) is regular ([18]), and so Xh is dense in X ′ and X.
J.-P. Benzécri [12] proved that the action of the projective group PGL(n+1,R)
on X is proper and cocompact. Y. Benoist [9] proved that Xδ is closed in X,
so the action of PGL(n+ 1,R) on Xδ is also proper and cocompact.
Consider the map

f : (Ω, x) ∈ X ′ −→ R

defined by

f(Ω, x) = max{‖Z‖
±

‖Z‖
, Z ∈ TwHΩ, π(w) = x}.

This map is continuous, positive and PGL(n + 1,R)-invariant on X ′. So, by
the Benoist-Benzécri result, there exists Cδ such that C−1

δ 6 f 6 Cδ on Xδ.
Hence, for any Gromov-hyperbolic Hilbert geometry (Ω, dΩ), ‖ · ‖ and ‖ · ‖±
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are bi-Lipschitz equivalent and Lemma 4.10 implies that Es = E−, Eu = E+

and ‖ · ‖ = ‖ · ‖±. In other words, f ≡ 1 on the subset Xh of X ′. Since Xh

is dense in X ′ and f is continuous, we have f ≡ 1 on X ′, which concludes the
proof.

5 Hyperbolicity and Lyapunov exponents

In this section, we want to understand the asymptotic behaviour of the geodesic
flow locally around a given orbit; in particular, we want to see when it is locally
hyperbolic. Since these are local considerations, we work in the universal cover
Ω and on HΩ.
In all this part, the Hilbert geometry (Ω, dΩ) is assumed to be defined by a
strictly convex set with C1 boundary.

5.1 Hyperbolicity of an orbit

The orbit ϕ · w of the point w ∈ HΩ of the geodesic flow ends at the point
w+ on the boundary. A fundamental observation is that most of the local
properties of the geodesic flow around the orbit ϕ · w are given by the local
shape of the boundary ∂Ω at the point w+.
Recall the following

Definition 5.1. Let k ∈ N, 0 < ε 6 1 and β > 2. Let f : U ⊂ Rn −→ Rk be
defined on an open subset U . Denote by T kf its Taylor expansion up to order
k, if defined. The function f is said to be

• of class Ck+ε on U if f is Ck on U and, for some constant C > 0,

|f(x)− f(y)− T kf(x)(x− y)| 6 C|x− y|k+ε, x, y ∈ U ;

• of class Dk+ε at x ∈ U if f is k-times differentiable at x and, for some
constant C > 0 and a neighborhood V of x,

|f(x)− f(y)− T kf(x)(x− y)| 6 C|x− y|k+ε, y ∈ V ;

• β-convex on U if f is C1 on U and, for some constant C > 0,

|f(x)− f(y)− T 1f(x)(x− y)| > C|x− y|β , x, y ∈ U.

• β-convex at x ∈ U if f is differentiable at x and, for some constant C > 0
and a neighborhood V of x,

|f(x)− f(y)− T 1f(x)(x− y)| > C|x− y|β , y ∈ V.
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To study the behaviour around the orbit ϕ · w of the point w ∈ HΩ, we
look at the action of the differential dϕt: we pick a vector Z ∈ TwHΩ and
look at the asymptotic behaviour of the function t 7−→ ‖dϕtZ‖. This function
is constant for Z ∈ R · X. Corollary 4.5 states that, for Z ∈ Es(w) (resp.
Z ∈ Eu(w)), ‖dϕtZ‖ decreases to 0 (resp. increases to +∞).
To go further, we want to see when the contraction/expansion on stable and
unstable subspaces are exponential.

Definition 5.2. A point w ∈ HΩ or its orbit ϕ · w is said to be hyperbolic if

sup
Zs∈Es(w)

lim sup
t→+∞

1

t
log ‖dϕtZs‖ < 0,

and

inf
Zu∈Eu(w)

lim inf
t→+∞

1

t
log ‖dϕtZu‖ > 0.

From Equalities (4.2) and (4.3), we see that

lim sup
t→+∞

1

t
log ‖dϕtZs‖ = −1 + lim sup

t→+∞

1

t
log ‖T tZs‖, Zs ∈ Es(w),

and

lim inf
t→+∞

1

t
log ‖dϕtZu‖ = 1 + lim inf

t→+∞

1

t
log ‖T tZu‖, Zu ∈ Eu(w).

Moreover, from the fact that Eu = JF (Es) and from the JF -invariance of the
norm, we see that w is hyperbolic if and only if

−1 < lim inf
t→+∞

1

t
log ‖T tZs‖ 6 lim sup

t→+∞

1

t
log ‖T tZs‖ < 1, Zs ∈ Es(w).

In terms of parallel transport on Ω, w is hyperbolic if and only if

−1 < lim inf
t→+∞

1

t
logF (T twv) 6 lim sup

t→+∞

1

t
logF (T twv) < 1, v ∈ Tπ(w)Hw+(π(w)).

Define

χ(w) = sup
Zu∈Eu(w)

lim sup
t→+∞

1

t
log ‖dϕtZu‖

and

χ(w) = inf
Zu∈Eu(w)

lim inf
t→+∞

1

t
log ‖dϕtZu‖.

These two numbers control the exponential rate of expansion on Eu along the
orbit ϕ · w. Using formula (4.1), we can prove the
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Proposition 5.3. An orbit ϕ ·w is hyperbolic, with exponents 0 < χ ≤ χ < 2

if and only if the boundary ∂Ω is of class C1+ε and β-convex at the point w+

for all 1 < 1 + ε < 2
χ and β > 2

χ .

5.2 Regular orbits and Lyapunov exponents

The exponential rate of contraction/expansion can depend on the vector that
we consider.

Definition 5.4. A point w ∈ HΩ or its orbit ϕ ·w is said to be forward weakly
regular if for any Z ∈ TwHΩ, the quantity 1

t log ‖dϕtZ‖ admits a limit χ(Z)
when t goes to +∞.
It is said to be weakly regular if this quantity has the same limit when t goes
to −∞.

From previous considerations, to see if a point w is forward weakly regular,
we only have to check that the limit exists for all Z ∈ Es(w) or that η(v) =
limt→+∞

1
t logF (T twv) exists for all v ∈ Tπ(w)Hw+(π(w)).

Let w ∈ HΩ be a forward weakly regular point. We call the number η(v)
the parallel Lyapunov exponent of the vector v. These numbers {η(v), v ∈
Tπ(w)Hw+(π(w))} can take only a finite number η1(w) < · · · < ηp(w) of values,
which are called the parallel Lyapunov exponents of w (or its orbit). There is
then a decomposition

Tπ(w)Hw+(π(w)) = E1 ⊕ · · · ⊕ Ep
called Lyapunov decomposition, such that, for any vector vi ∈ Ei r {0},

lim
t→+∞

1

t
log ‖T tw(vi)‖ = ηi(w).

I have made a detailed study of (parallel) Lyapunov exponents in [19]. I
specify Proposition 5.3 by making a link between the Lyapunov exponents of
w and some regularity properties of the boundary ∂Ω at w+.

Finally, if we want to look at how the flow transforms volumes along a
given orbit ϕ · w, we can look at the quantity detT tw.

Definition 5.5. A point w ∈ HΩ is said to be regular if w is weakly reg-
ular, with parallel Lyapunov exponents η1(w) < · · · < ηp(w) and Lyapunov
decomposition Tπ(w)Hw+(π(w)) = E1 ⊕ · · · ⊕ Ep, and if

lim
t→±∞

1

t
log detT tw =

p∑
i=1

dimEi ηi(w) =: η(w).
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Remark that in this definition, the determinant is not computed with re-
spect to a Riemannian metric but with respect to a Finsler metric. This
depends on the volume we associate to the Finsler metric. Since all natural
volumes are equivalent, let us say that the determinant is computed with re-
spect to the Busemann-Hausdorff volume VolΩ.
An important fact is that the Lyapunov exponents of a periodic orbit of the
geodesic flow of a quotient manifold M = Ω/Γ can be explicitly computed. As
we have seen (Proposition 2.7), such an orbit corresponds to the conjugacy
class of a hyperbolic element g ∈ Γ, and we get the following result, which
involves the eigenvalues of g:

Proposition 5.6. Let g be a periodic orbit of the geodesic flow of the manifold
M = Ω/Γ, corresponding to a hyperbolic element g ∈ Γ. Denote by λ0 > λ1 >
· · · > λp > λp+1 the moduli of the eigenvalues of g. Then

• g is regular and has no zero Lyapunov exponent;

• the Lyapunov exponents (ηi(g)) of the parallel transport along g are given
by

ηi(g) = −1 + 2
log λ0 − log λi

log λ0 − log λp+1
, i = 1 · · · p;

• the sum of the parallel Lyapunov exponents is given by

η(g) = (n+ 1)
log λ0 + log λp+1

log λ0 − log λp+1
.

6 Compact quotients

We now want to consider global properties of the geodesic flow of a compact
quotient manifold M = Ω/Γ, in the case the convex set Ω is strictly convex

(and then with C1 boundary).

6.1 The Anosov property

Recall the

Definition 6.1. Let ϕt : M −→ M be a C1 flow on a compact Finsler man-
ifold (M, ‖ · ‖). The flow ϕt is an Anosov flow it there exists a ϕt-invariant
decomposition

THM = R ·X ⊕ F s ⊕ Fu,
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called the Anosov decomposition, and constants C,α > 0 such that for any
t > 0,

‖dϕt(Zs)‖ 6 Ce−αt‖Zs‖, Zs ∈ F s,

‖dϕ−t(Zu))‖ 6 Ce−αt‖Zu‖, Zu ∈ Fu.

This property is named under the name of D. V. Anosov. In [2], he proved
that the geodesic flow of a negatively curved compact Riemannian manifold
satisfies this property and used it to prove its ergodicity relative to its invariant
volume (see Section 7.1).

Theorem 6.2 (D. V. Anosov [2], P. Eberlein [23], P. Foulon [26]). Let F be
a regular Finsler metric of negative curvature on a compact manifold M . The
geodesic flow of F on HM is an Anosov flow.

The proof of this result is based on a study of Jacobi fields, whose behaviour
can be understood under the curvature assumption. As we have seen, the same
can be done in Hilbert geometry, and it is even easier since the curvature is
constant: we get actual equalities relating parallel transport and action of the
flow.

Theorem 6.3 (Y. Benoist, [10]). Let M = Ω/Γ be a compact manifold. The
geodesic flow of the Hilbert metric is an Anosov flow on HM , with invariant
decomposition

THM = R ·X ⊕ Es ⊕ Eu.

Moreover, the geodesic flow is topologically mixing: for any open subsets A
and B of HM , there is a time T ∈ R such that for all t > T , ϕt(A) ∩B 6= ∅.

The Anosov property is a direct consequence of Corollary 4.5 together with
compactness. We give a short proof of this fact below.
For topological mixing, we refer to Y. Benoist’s paper Section 5.3, or to [21]
where the proof is extended to some noncompact quotients. The action of
the group Γ on the boundary ∂Ω is minimal, and this allows us to see that
the set {(x+

g , x
−
g ), g ∈ Γ} is dense in ∂Ω × ∂Ω, that is periodic orbits of

the flow are dense in HM . Topological transitivity2 follows from this last
result. Topological mixing then comes from the non-arithmeticity of the length
spectrum, which is a consequence of Theorem 2.6 through the fact that the
length of closed orbits is given by the eigenvalues of the elements of the group
Γ (see Section 2.4.2).

2A flow ϕt is topologically transitive for any open subsets A and B of HM , there is a
time T ∈ R such that ϕT (A) ∩B 6= ∅
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Proof of the Anosov property. Choose T > 0. The set

E1 = {Z ∈ Es | ‖Z‖ = 1}

of unit stable vectors is compact, and the function Z ∈ E1 7−→ ‖dϕT (Z)‖ is
continuous, hence attains its maximum for some vector ZM . Lemma 4.5 tells
us that a := ‖dϕT (ZM )‖ < 1, so that, for all Z ∈ Es,

‖dϕT (Z)‖ 6 a‖Z‖.

Finally, for t > 0, and setting n = [t/T ], we get

‖dϕt(Z)‖ 6 an‖dϕt−nZ‖ 6 DTa
n‖Z‖ 6 DT

at−n
elog at‖Z‖,

with DT = max

{
‖dϕt(Z)‖
‖Z‖

, Z ∈ Es, 0 6 t 6 T

}
.

This gives the upper bound for stable vectors; the same works for unstable
ones.

Notice that there is an important difference with the negatively curved
Riemannian case. Here, we do not really know what occurs for small t: we
know that the norm of a stable vector decreases but we have no control on
the rate of decreasing, unlike in the Riemannian case where even infinitesimal
exponential rates are controlled by the bounds on the curvature.

6.2 Regularity of the boundary

As a Corollary of Proposition 5.3, we get the

Corollary 6.4. Let M = Ω/Γ be a compact quotient manifold. Then the

boundary ∂Ω of Ω is C1+ε and β-convex for all

1 < 1 + ε < α(Ω) :=
2

χ(HM)
,

2

χ(HM)
=: β(Ω) ≤ β

where

χ(HM) = sup
w∈HM

χ(w), χ(HM) = inf
w∈HM

χ(w).

In particular, the geodesic flow is C1+ε for some ε > 0.

From symmetry arguments, we can see that

1

α(Ω)
+

1

β(Ω)
= 1.
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Define α(Γ) as the biggest 1 < α = 1 + ε 6 2 such that ∂Ω is C1+ε at all the
fixed points of the elements of Γ. Obviously, we have α(Ω) ≤ α(Γ) and O.
Guichard gave a geometrical proof of the following:

Theorem 6.5 (O. Guichard [30]). Let M = Ω/Γ be a compact quotient man-
ifold. We have α(Ω) = α(Γ).

A dynamical proof had been given by U. Hamenstädt in a more general
context. She proved the following which implies the previous result.

Theorem 6.6 (U. Hamenstädt [31]). Let M = Ω/Γ be a compact quotient
manifold. Let

χ(Per) = sup{χ(w), w ∈ HM periodic}.

We have χ(Per) = χ(HM).

6.3 Geometrical rigidity

The algebraic nature of locally symmetric spaces confer them very specific
properties that often turn to be characteristic. Some of these properties di-
rectly involve the dynamics of the geodesic flow. For example, let us recall the
beautiful

Theorem 6.7 (Y. Benoist-P. Foulon-F. Labourie [11]). Let (M, g) be a com-
pact Riemannian (or reversible regular Finsler) manifold of negative curvature.
If the Anosov decomposition is C∞ then (M, g) is locally symmetric.

Actually, the authors proved a more general result about contact Anosov
flows. In particular, they covered the case of a non-reversible Finsler metric:
If the Anosov decomposition is C∞, then there exists a closed 1-form α on M
such that F ′ = F + α is a locally symmetric Riemannian metric on M .
A similar result, which is easier to prove, allows to characterize the hyperbolic
space among all strictly convex divisible Hilbert geometries.

Theorem 6.8 (Y. Benoist [10]). Let (Ω, dΩ) be a strictly convex divisible
Hilbert geometry. The following are equivalent:

(1) the convex set Ω is an ellipsoid;

(2) the boundary ∂Ω is C1+ε for all 0 6 ε < 1;

(3) the Anosov decomposition is Cε for all 0 6 ε < 1.

Proof. The implication (1) ⇒ (2) is obvious. (2) ⇔ (3) comes from the de-
scription of stable and unstable bundles as

Eu = {Y + JF (Y ), Y ∈ V HΩ}, Es = {Y − JF (Y ), Y ∈ V HΩ} = JF (Eu)



36 Mickaël Crampon

and the fact that the subbundle hFHΩ and the map JF are Cε if ∂Ω is C1+ε.
The implication (2)⇒ (1) uses Corollary 6.4. If the boundary ∂Ω is C1+ε for
all 1 6 α < 2, that means χ(HM) = 1. In particular, the largest Lyapunov
exponent of any periodic orbit is 1. By Proposition 5.6, that means

2
log λ0(g)− log λi(g)

log λ0(g)− log λp+1(g)
= 1

for all g ∈ Γ. By Theorem 2.6, this implies Γ is not Zariski-dense in SL(n +
1,R). Theorem 2.5 concludes that Ω is an ellipsoid.

7 Invariant measures

There are various ways of looking at a dynamical system. In this section, we
want to look at geodesic flows from a measure-theoretic point of view.
Let us first recall some basic definitions. We are given a flow ϕt on a topological
space X.

• A Borel measure µ on X is invariant by the geodesic flow if ϕt ∗ µ = µ,
that is, for any Borel subset of X, we have µ(ϕt(A)) = µ(A).

• An invariant measure is ergodic if any invariant Borel subset has zero or
full measure.

• An invariant probability measure µ is mixing if for any Borel sets A,B,
we have limt→+∞ µ(ϕt(A)∩B) = µ(A)µ(B); mixing implies ergodicity.

Geodesic flows of compact negatively curved Riemannian or regular Finsler
manifolds preserve lots of probability measures. The simplest are probably
those defined by periodic orbits: if w is a periodic point of period Tw > 0, we
can define an invariant probability measure by pushing forward by the appli-
cation t ∈ [0, Tw] 7−→ ϕt(w) the Lebesgue measure of [0, Tw], and normalizing
it. If we look at the geodesic flow from this measure-theoretic point of view,
the system seems trivial: almost every point is periodic with the same period.

7.1 Absolutely continuous measures

Let M be a manifold and λ the Riemannian measure of an arbitrary Rieman-
nian metric on M . We say that a measure µ on M is smooth or is a volume if
dµ = fdλ with f : M −→ R everywhere positive and continuous; in the case f
is only measurable and nonnegative, we say that µ is an absolutely continuous
measure.
Since a regular Finsler geodesic flow is in particular a Hamiltonian flow, it pre-
serves the Liouville measure, which is given by A∧dAn−1, where A denotes the
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Hilbert form of the metric (see Section 3.2.3). For a compact negatively curved
manifold M , this measure is ergodic and so is the only invariant measure in
its Lebesgue class.

7.2 Entropies

7.2.1 Topological entropy Geodesic flows are continuous actions of the
group R by diffeomorphisms. Its topological entropy measures the topological
complexity of this action.
Let us recall its definition for a flow ϕt : X −→ X on a compact metric space
(X, d). For t > 0, we define the distance dt on X by :

dt(x, y) = max
06s6t

d(ϕs(x), ϕs(y)), x, y ∈ X.

For any ε > 0 and t > 0, we consider coverings of X by open sets of diameter
less than ε for the metric dt. Let N(ϕ, t, ε) be the minimal cardinality of
such a covering. The topological entropy of the flow is then the (well defined)
quantity

htop(ϕ
t) = lim

ε→0

[
lim sup
t→∞

1

t
logN(ϕ, t, ε)

]
.

It is important to remark that since the space is compact, the topological en-
tropy does not depend on the metric d, but only on the topology defined by
d on the space X: if we replace the metric by a topologically equivalent one,
then we will get the same number.

7.2.2 Measure-theoretical entropy To every invariant probability mea-
sure m of the flow ϕt is attached its measure-theoretical entropy hm(ϕt), which
measures the complexity of the flow from this measure point of view. We re-
fer to P. Walters’ monograph for a complete description [53]. As could be
expected, measures defined by periodic orbits have zero entropy whereas the
Liouville volume has always positive entropy (in the negatively curved case).
We will give an expression of the entropy of the Liouville measure in a forth-
coming section.

7.2.3 Variational principle and measure of maximal entropy A vari-
ational principle makes a link between measure-theoretical and topological
entropies. This principle asserts that

htop(ϕ
t) = sup

µ
hµ(ϕt),

where the supremum is taken over all invariant probability measures. A mea-
sure which achieves the supremum is called a measure of maximal entropy. In
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some sense, such a measure is well adapted to describe the topological action.
The following theorem gives existence and uniqueness of a measure of maximal
entropy for hyperbolic dynamics.

Theorem 7.1 (See for instance [36]). Let W be a compact manifold. A topo-
logically transitive Anosov flow ϕt : W −→ W admits a unique measure of
maximal entropy.

As a consequence, the geodesic flow of a compact negatively curved man-
ifold admits a unique measure of maximal entropy. It is usual to call it the
Bowen-Margulis measure because R. Bowen and G. Margulis gave two inde-
pendent constructions of it; we will denote it by µBM . Both constructions are
of particular interest.
In his PhD thesis, G. Margulis [44, 45] constructed this measure as a product
measure. Stable, unstable and orbit foliations provide local coordinate sys-
tems W s ×Wu × (−ε, ε): each point w has a neighborhoord U in which any
point is at the intersection of exactly one local stable leaf W s ∩ U , one local
unstable leaf Wu ∩ U and one local orbit ϕ · w ∩ U . The measure is then
described locally as a product µBM = µs × µu × dt, where the measures µs

and µu are measures on stable and unstable leaves, uniquely defined by the
following transition property, involving topological entropy:

ϕt ∗ µsw = e−htoptµsϕt(w), ϕ
t ∗ µuw = ehtoptµuϕt(w), w ∈W.

In [15, 16], R. Bowen proved that for the geodesic flow of a compact hyperbolic
manifold, closed orbits were uniformly distributed with respect to the Liouville
measure, which in this case is also the measure of maximal entropy. Bowen’s
construction extends to the case of a topologically transitive Anosov flow, and
finally, we find that closed orbits are uniformly distributed with respect to a
specific measure, which actually coincides with the one Margulis introduced.

7.3 Harmonic measure and measure of maximal entropy

We have seen (Theorem 6.7) that locally symmetric spaces can be character-
ized among other Riemannian negatively curved compact manifolds by the
regularity of their Anosov decomposition.
We expect them to be also characterized by some property of their invariant
measures. Of particular interest are the Liouville measure, the Bowen-Margulis
measure and the harmonic measure. These three measures are naturally re-
lated to various aspects of the manifold:

• the Liouville measure is directly defined through the local Euclidean
structure defined by the Riemannian metric;
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• the Bowen-Margulis measure describes the distribution of closed orbits
of the geodesic flow, hence it is related to the distribution of closed
geodesics on the manifold;

• the harmonic measure is related to the Brownian motion on the universal
covering of the manifold, hence to the Laplace-Beltrami operator.

For locally symmetric manifolds, such as hyperbolic manifolds, these three
measures coincide and there are deep relations between the Riemannian struc-
ture, the distribution of closed geodesics and the Laplace-Beltrami operator.
For non-locally symmetric manifolds, we expect the three measures to be dis-
tinct, and the previous links to fail. This has been confirmed for the harmonic
measure:

Theorem 7.2. Let M be a compact negatively curved Riemannian manifold.

• The Bowen-Margulis measure coincide with the Liouville measure if and
only if the universal covering M̃ is asymptotically harmonic, that is,
horospheres have constant mean curvature.

• The harmonic and Liouville measures coincide if and only if M is locally
symmetric.

The first point is due to F. Ledrappier [38]; he also proved in the same
work that Liouville and harmonic measures coincide if and only if the universal
covering M̃ is asymptotically harmonic. This last result is used by G. Besson,
G. Courtois and S. Gallot [13] together with their minimal entropy rigidity
theorem to deduce the second point.
Concerning the Bowen-Margulis measure, the situation had been clarified by
A. Katok [35] for surfaces; P. Foulon [28] extended it to the more general case
of contact Anosov flows. We give the following version:

Theorem 7.3 (A. Katok [35], P. Foulon [28]). Let (M,F ) be a compact regular
Finsler surface of negative curvature. The Liouville measure coincide with
the Bowen-Margulis measure if and only if M is a Riemannian manifold of
constant curvature.

7.4 Regular Finsler metrics

For negatively curved regular Finsler metrics, comparing the Liouville measure
A ∧ dAn−1 with the Bowen-Margulis one is still a relevant question, that has
not been considered except for Foulon’s contribution [28]. The extension to
negatively curved regular Finsler metrics should not change the conjecture: if
both measures coincide, the manifold should be Riemannian and locally sym-
metric.
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The case of the harmonic measure is more delicate, because there are vari-
ous ways to extend the Laplace-Beltrami operator from the Riemannian to the
Finsler world, namely because it lives on the manifold and not on its tangent
bundle.
There have been various attempts to define such an extension, but they have
not been studied further. The more recent is T. Barthelmé’s definition [4]
which is directly linked to the approach to Finsler geometry we have here.
Barthelmé proved in his Ph.D. thesis [5] that the harmonic measure is well
defined in the negatively curved case, but its properties have not been studied
yet.

7.5 Hilbert geometries

To my knowledge, there is no natural Brownian motion defined on a general
Hilbert geometry. All proposed extensions of the Riemannian definition require
the regularity of the metric; in particular, there is no natural way of defining
a harmonic measure associated to the Hilbert metric of a convex projective
compact manifold M = Ω/Γ (apart from the case of hyperbolic manifolds).

Let M = Ω/Γ be a compact manifold, with (Ω, dΩ) a strictly convex Hilbert
geometry, and Γ a discrete subgroup of Aut(Ω). We have seen that the geodesic
flow on HM is a topologically mixing Anosov flow. In particular, according to
Theorem 7.1, it admits a unique measure of maximal entropy µBM , which is
ergodic and mixing. The following general rigidity result implies in particular
that this measure is absolutely continuous if and only if M is Riemannian
hyperbolic, that is, Ω is an ellipsoid.

Theorem 7.4 (Y. Benoist [10]). Let M = Ω/Γ be a compact quotient manifold,
with (Ω, dΩ) a strictly convex Hilbert geometry, and Γ a discrete subgroup of
Aut(Ω). If Ω is not an ellipsoid, the geodesic flow on HM admits no absolutely
continuous invariant measure.

Proof. A. Livšic [41, 42] had already seen that any absolutely continuous mea-
sure had to be smooth. In particular, for any periodic point w ∈ HM of period
T , the change of variable formulas implies that

det dwϕ
T = 1.

This implies in our context (see Section 5) that, for any periodic point w ∈ HM
of period T ,

detTTw = 1.

In the notation of Section 5.2, this implies that, for any g ∈ Γ, we have
η(g) = 0. According to Proposition 5.6, this is equivalent to a condition on the
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eigenvalues of the element of Γ, which cannot be satisfied if Γ is Zariski-dense
in SL(n+ 1,R) via Theorem 2.6. Theorem 2.5 tells us Ω is an ellipsoid.

As we have already noticed in Section 3.2.4, the last result can be seen as a
consequence of the lack of regularity of the Legendre transform. In particular,
this raises the question of characterizing the pullback of the Liouville volume
on H∗M by the Legendre transform.

Finally, it seems that there is no counterpart neither for the harmonic
measure nor for the Liouville measure in Hilbert geometry. Nevertheless, we
will see in the next section that the Liouville measure is also characterized by
another property than its absolute continuity, and this allows us to define an
extension (in reality two) of the Liouville measure.

8 Entropies

8.1 Volume entropy

The volume entropy of a Hilbert geometry measures the exponential growth
of volume of balls. It is defined as

hvol = lim sup
R→+∞

1

R
VolΩ(B(o,R))

where o is an arbitrary point in Ω. The Hilbert geometry defined by the simplex
has zero volume entropy while the volume entropy of the (n− 1)-dimensional
hyperbolic space is n− 1. We conjecture that those are the extremal cases:

Conjecture. Let (Ω, dΩ) be a Hilbert geometry. Then its volume entropy is
less than n− 1.

The result has been proved in dimension 2 by G. Berck, A. Bernig and C.
Vernicos. Recently, Vernicos gave a proof in dimension 3. In higher dimen-
sions, it is known to be true for polytopes, which have zero entropy, and for
convex sets whose boundary is C1+1, for which hvol = n− 1.
For divisible convex sets, we can use a dynamical approach using the following

Theorem 8.1 (A. Manning [43], see also [20]). Let (Ω, dΩ) be a Hilbert ge-
ometry, M = Ω/Γ a compact quotient manifold with G < Isom(Ω, dΩ). The
volume entropy of (Ω, dΩ) equals the topological entropy of the geodesic flow of
M .
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8.2 Topological entropy

Theorem 8.2. Assume M = Ω/Γ is compact, with Ω strictly convex. The
topological entropy of the geodesic flow satisfies htop 6 n − 1, with equality if
and only if Ω is an ellipsoid.

Sketch of the proof. Ruelle’s inequality [48] implies that

htop = hµBM
6 n− 1 +

∫
HM

η dµBM .

Oseledec’s Theorem [47] says that the set Λ ⊂ HM of regular points has
full µBM measure. Furthermore, this set is invariant under the flip map σ :
HM −→ HM defined by

σ(x, [ξ]) = (x, [−ξ]),

and we have η ◦ σ = −η on Λ.
To get the inequality, we just have to remark that, since F is reversible, σ
conjugates ϕt and ϕ−t, hence µBM is the measure of maximal entropy of both
flows and σ ∗ µBM = µBM . We conclude that

∫
HM

η dµBM = 0.
For the equality case, recall that F. Ledrappier and L.-S. Young proved that
equality in Ruelle’s inequality

hµ 6
∫
χ+ dµ

occurs if and only if the measure µ has absolutely continuous conditional mea-
sures on unstable manifolds. But the diffeomorphism σ sends stable manifolds
to unstable ones. Since σ preserves µBM , the Lebesgue class of its conditional
measures on stable and unstable manifolds coincide. In particular, there is
equality in Ruelle’s inequality for µBM if and only if µBM is itself absolutely
continuous. By Theorem 7.4, this implies Ω is an ellipsoid.

The last two theorems imply that Conjecture 8.1 is true for divisible strictly
convex Hilbert geometries. The numerous examples of such geometries also
provide numerous examples whose volume entropy is positive but strictly
smaller than n− 1.

8.3 Variations of entropy

Given a compact manifold M of dimension d, consider the moduli space β(M)
of marked convex projective structures on M . Such a structure can be de-
scribed by a pair (dev, ρ) consisting of

• a developing map dev : M̃ −→ RPn which is a diffeomorphism onto a
convex set Ω;
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• a faithful morphism ρ : π1(M) −→ PSL(n + 1,R) called the holonomy
map with respect to which dev is π1(M)-equivariant; its image Γ =
ρ(π1(M)) divides Ω with quotient Ω/Γ diffeomorphic to M .

The space β(M) is endowed with the topology given by uniform convergence
on compact subsets on the first coordinate and the compact-open topology on
the second.

Proposition 8.3. Let M be a compact manifold of dimension n. The entropy
function hvol : β(M) −→ (0, n− 1] is continuous.

Proof. Consider a deformation (ρλ, devλ), λ ∈ [−1, 1] of a given structure
(ρ0, dev0). These structures provide Finsler metrics Fλ on the abstract mani-
fold M . These metrics vary continuously with λ in the following sense:

lim
λ→0

sup
TMr{0}

Fλ
F0

= 1.

For let T 1M the unit tangent bundle for F0. Since T 1M is compact and
λ 7→ devλ is continuous,

lim
λ→0

sup
T 1M

|Fλ − F0| = 0.

Moreover minT 1M F0 > 0, hence

lim
λ→0

sup
T 1M

|Fλ
F0
− 1| = 0.

Homogeneity gives the result, that is there exist reals Cλ > 1 such that
limλ→0 Cλ = 1 and

C−1
λ 6 sup

TMr{0}

Fλ
F0

6 Cλ.

Denote by d̃λ the associated distances on M̃ . Let x, y ∈ M̃ , and cλ be the
geodesic from x to y for the metric d̃λ, such that

∫
F̃λ(c′λ(t)) dt = d̃λ(x, y).

Then

C−1
λ 6

∫
F̃λ(c′λ(t)) dt∫
F̃0(c′λ(t)) dt

6
d̃λ(x, y)

d̃0(x, y)
6

∫
F̃λ(c′0(t)) dt∫
F̃0(c′0(t)) dt

6 Cλ.

Thus for any x, y ∈ M̃ ,

C−1
λ 6

d̃λ(x, y)

d̃0(x, y)
6 Cλ.
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From that we clearly get B̃λ(x,R) ⊂ B̃0(x,CλR). Hence

hvol(ρλ, devλ) = lim sup
R→∞

1

R
card{g ∈ π1(M), gx ∈ B̃λ(x,R)}

6 lim sup
R→∞

1

R
card{g ∈ π1(M), gx ∈ B̃0(x,CλR)}

= Cλhvol(ρ0, dev0).

Similarly, C−1
λ hvol(ρ0, dev0) 6 hvol(ρλ, devλ). This gives the continuity.

For a 2-dimensional manifold M of genus g = 1, the convex structure is
necessarily given by a triangle, whose entropy is zero. If g > 2, the space β(M)
has been well described by W. Goldman [29] as a manifold diffeomorphic to
R16g−16.
X. Nie studied in [46] a special kind of projective structures given by simplicial
Coxeter groups, and among other things he showed the following

Theorem 8.4 (X. Nie [46]). Let M be a compact 2-dimensional manifold.
The entropy function hvol : β(M) −→ (0, 1] is a surjective continuous map.

8.4 Sinai-Ruelle-Bowen measures

Consider a flow ϕt on a compact manifold W preserving a smooth probability
measure λ. Birkhoff’s ergodic theorem asserts that there is set Aλ ⊂M of full
λ-measure on which the quantity

1

t

∫ t

0

g(ϕt(x)) dt

converges to some g(x) as t goes to +∞ for any integrable Borel function g.
This limit function x −→ g(x) is integrable and invariant under the flow. In
particular, in the case λ is ergodic, g is (λ-almost everywhere) constant equal
to
∫
g dλ.

In general, a flow ϕt on a compact manifold W does not preserve a smooth
measure but it seems legitimate to ask ourselves about the behaviour of a
random orbit, chosen randomly with respect to some Lebesgue probability
measure λ. In particular, does there exist a subset of full λ-measure on which
the Birkhoff averages

1

t

∫ t

0

g(ϕt(x)) dt
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converge for all continuous function g ? If it is the case and the limit is constant
(λ-almost everywhere), we can then define a measure µ+ by∫

g dµ+ = lim
t→+∞

1

t

∫ t

0

g(ϕt(x)) dt.

Such a measure is called a physical measure for the flow ϕt since it describes
the asymptotic distribution of Lebesgue almost every orbit.

Theorem 8.5 (R. Bowen-D. Ruelle [17]). Any C1+ε Anosov flow on a compact
manifold M admits a unique physical measure.

Bowen and Ruelle constructed this measure as the equilibrium measure of
the potential

f+ = − d

dt
|t=0 log det dϕtEu .

That is, µ+ is the unique measure which maximizes the quantity

P (f+, µ) = hµ +

∫
f+ dµ

among all invariant probability measures. In particular, from general results,
µ+ is ergodic. Furthermore, the pressure P (f+) = supµ P (f+, µ) is zero and
we have

hµ = −
∫
f+ dµ.

This implies that µ+ achieves the equality in Ruelle’s inequality and is the
unique measure to do so. In particular, from Ledrappier-Young theorem [39],
µ+ is the only invariant probably measure to have absolutely continuous con-
ditional measures on unstable manifolds.

Recall that the flip map σ : HM −→ HM is defined by σ(x, [ξ]) = (x, [−ξ]).
The measure µ− := σ ∗ µ+ is also invariant by ϕt and is in fact the physical
measure of ϕ−t. In other words, the Birkhoff averages

1

|t|

∫ 0

t

g(ϕt(x)) dt

converge to
∫
g dµ− when t goes to −∞. Similarly, we find that µ− is the

equilibrium measure of the potential

f− = − d

dt
|t=0 log det dϕtEs ,

and that it has absolutely continuous conditional measures on stable mani-
folds.
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Finally, both measures µ+ and µ− coincide if and only if one of them is abso-
lutely continuous.

All of this applies to the geodesic flow of a compact quotient of a strictly
convex Hilbert geometry, which is C1+ε from Corollary 6.4.

Corollary 8.6. Let M = Ω/Γ be a compact quotient manifold of a strictly
convex Hilbert geometry. Unless Ω is an ellipsoid, the three measures µBM ,
µ+ and µ− are mutually singular.

As a direct application of the fact that the measure µ+ achieves the equality
in Ruelle’s inequality, we can give a lower bound on its entropy, hence on
topological entropy:

Proposition 8.7 ([20]). Let (Ω, dΩ) be a strictly convex divisible Hilbert ge-
ometry where Ω is not an ellipsoid. Assume ∂Ω is β-convex for a β ∈ (2,+∞).
Then

htop >
2

β
(n− 1).

Another application is given in the next section.

8.5 Curvature of the boundary of a divisible convex set

Let us begin with an old theorem of A. D. Alexandrov [1] about convex func-
tions:

Theorem 8.8. Let f : U ⊂ Rn 7−→ R be a convex function defined on a

convex open set U of Rn. The Hessian matrix Hess(f) =
(
∂2f
∂i∂j

)
ij

exists

Lebesgue almost everywhere in U .

Let Ω be a bounded convex set of the Euclidean space Rn. It is then
possible to compute the Hessian of its boundary at Lebesgue almost every
point x ∈ ∂Ω. We will call a D2 point a point x where this is possible.
The Hessian is a positive symmetric bilinear form on the tangent space Tx∂Ω.
It represents the curvature of the boundary at x. When it is degenerate, that
means the curvature of the boundary is zero in some tangent direction.
The Hessian is a Euclidean notion, but its degeneracy is not. Namely, if Ω is a
properly convex open set of RPn and x a point of ∂Ω, we can choose an affine
chart centered at x and a metric on it and compute the Hessian of ∂Ω at x; its
degeneracy does not depend on the choice of the affine chart and the metric.
We can measure the vanishing of the curvature of ∂Ω in the following way. Fix
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a smooth measure λ∗ on the boundary of the dual convex set Ω∗, and call λ
its pull-back to ∂Ω. Then λ can be seen as a measure of the curvature of ∂Ω.
It can be decomposed as

λ = λac + λsing,

where λac is an absolutely continuous measure and λsing is singular with re-
spect to any Lebesgue measure on ∂Ω. For example, if ∂Ω is not differentiable
at some point x then λ will have an atom at x. The support of λac is the
closure of the set of D2 points with nondegenerate Hessian.
Though Ω is convex, it may happen that λac = 0, that is, λ is singular with
respect to some (hence any) smooth measure on ∂Ω. This is equivalent to the
fact that the Hessian is degenerate at almost all D2 point of ∂Ω. We then
say that the curvature of the boundary is supported on a set of zero Lebesgue
measure.
The following lemma gives a criterion for this to happen, which is due to J.-P.
Benzécri [12]:

Lemma 8.9. Let Xn denote the set of properly convex open sets of RPn, and
pick Ω ∈ Xn. If there exists a D2 point x ∈ ∂Ω with nondegenerate Hessian,
then the closure of the orbit PGL(n+ 1,R) · Ω in Xn contains an ellipsoid.

Proof. Choose an affine chart and a Euclidean metric on it such that Ω appears
as a bounded convex open set of Rn. Let x be a point of ∂Ω with nondegenerate
Hessian. Let E be the osculating ball of ∂Ω at x. It defines a hyperbolic
geometry (E , dE). Pick a point y ∈ ∂E distinct from x, and choose a hyperbolic
isometry g of E whose attracting fixed point y and repulsive one x. Now, since
∂E and ∂Ω are tangent up to order 2, it is not difficult to see that gn · Ω
converges to E when n goes to +∞. This proves the statement.

As a consequence, we get the following

Theorem 8.10. Let (Ω, dΩ) be a divisible Hilbert geometry, and assume Ω is
not an ellipsoid. Then any D2 point has degenerate Hessian. In particular,
the curvature of ∂Ω is supported on a subset of zero Lebesgue measure.

Proof. This is a consequence of the last proposition and of the following fact:
if Ω is divisible then the orbit of Ω under PGL(n + 1,R) is closed in Xn (for
a proof of this fact, see Proposition 9.18 in L. Marquis’ contribution).

The boundary of a divisible convex set has thus a quite mysterious geom-
etry. In the case of a strictly convex divisible set, we can be more precise
using the fact that the unstable conditional measures of µ+ are absolutely
continuous:
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Proposition 8.11 ([19]). Let (Ω, dΩ) be a strictly convex divisible Hilbert
geometry. There exists ε > 0 such that, for Lebesgue almost every point x ∈
∂Ω, there exists a 2-dimensional subspace Px intersecting Ω and containing x
such that the boundary of the 2-dimensional convex set Ω ∩ Px is D2+ε at x.
In particular, if Ω ⊂ RP2, there exists ε > 0 for which its boundary ∂Ω is
D2+ε at Lebesgue almost every point.
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