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Abstra
t. We study the spe
trum of the Finsler�Lapla
e operator for regular Hilbert geometries,

de�ned by 
onvex sets with C2
boundaries. We show that for an n-dimensional geometry, the spe
tral

gap is bounded above by (n − 1)2/4, whi
h we prove to be the in�mum of the essential spe
trum. We

also 
onstru
t examples of 
onvex sets with arbitrarily small eigenvalues.
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1. Introdu
tion

Hilbert geometries, introdu
ed by David Hilbert to illustrate the fourth of his twenty-three problems,

are among the most simple and studied examples of Finsler geometries. They 
an be 
onsidered as a

generalization of hyperboli
 geometry in the 
ontext of metri
 geometry, and a general and now well stud-

ied question is to understand if they inherit the same geometri
 or analyti
 properties as the hyperboli


spa
e; see for instan
e [6℄ for a good overview.

In [3℄, the �rst author introdu
ed and began to study a new generalization of the Lapla
e operator to

Finsler geometry. It thus gives another analyti
al tool to understand the di�eren
es between Hilbert ge-

ometries and the hyperboli
 spa
e. For the n-dimensional hyperboli
 spa
e, the spe
trum of the Lapla
e

operator is known to be the interval [(n − 1)2/4,∞). In parti
ular, it 
onsists only of its essential part,

and there is no eigenvalue below (n − 1)2/4 (see for example [14℄). In this arti
le, we will see that the

bottom of the essential spe
trum of a regular n-dimensional Hilbert geometry is also (n − 1)2/4, but
that, in 
ontrast with hyperboli
 geometry, a lot of arbitrarily small eigenvalues 
ould appear under the

essential spe
trum.

The �rst author was partially supported by the FNS grant no. 20-137696/1. The third author was partially supported

by the CONICYT grant no. 3120071.
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1.1. Finsler and Hilbert metri
s.

De�nition 1.1. Let M be a manifold. A Finsler metri
 on M is a 
ontinuous fun
tion F : TM → R+

that is:

(1) C2
, ex
ept on the zero se
tion;

(2) positively homogeneous, that is, F (x, λv) = λF (x, v) for any λ > 0;
(3) positive-de�nite, that is, F (x, v) ≥ 0 with equality i� v = 0;

(4) strongly 
onvex, that is,

(

∂2F 2

∂vi∂vj

)

i,j

is positive-de�nite.

A Hilbert geometry is a metri
 spa
e (C, dC) where
• C is a properly 
onvex open subset of the proje
tive spa
e RP

n
; properly 
onvex means that C


ontains no a�ne line; in other words, it appears as a relatively 
ompa
t open set in some a�ne


hart.

• dC is a metri
 on C is de�ned in the following way (see Figure 1a): for x, y ∈ C, let a and b be

the interse
tion points of the line (xy) with ∂C; then

dC(x, y) =
1

2
| ln[a : b : x : y]|,

where [a : b : x : y] is the 
ross-ratio of the four points; if we identify the line (xy) with R∪ {∞},
it is de�ned by [a : b : x : y] = |ax|/|bx|

|ay|/|by| .

When C is an ellipsoid, the Hilbert geometry of C gives the Klein�Beltrami model of hyperboli
 spa
e.

The Hilbert metri
 dC is generated by a �eld of norms FC on C, i.e., dC(x, y) = inf
∫ 1

0
F (c(t), c′(t)) dt,

where the in�mum is taken over all C1

urves c : [0, 1] −→ C from x to y. In an a�ne 
hart 
ontaining C

as a relatively 
ompa
t subset, the norm F (x, u) of a tangent ve
tor u ∈ TxC is given by the formula

FC(x, u) =
|u|
2

(

1

|u−x| +
1

|xu+|

)

,

where | · | is an arbitrary Eu
lidean metri
 on the a�ne 
hart, and u+
and u−

are the interse
tion points

of the line x+ R.u with the boundary ∂C (see Figure 1b).

x

y

b

a

(a) dC(x, y) = |ln[a : x : y : b]| /2

xu
−

u
+

u

(b) FC(x, u) =
(

1/|u−x|+ 1/|xu+|
)

|u|/2

Figure 1

In general, a Hilbert geometry fails to be a Finsler spa
e due to regularity issues: the regularity of FC
depends on the boundary of C, so FC does not ne
essarily satisfy the �rst and fourth points of De�nition

1.1. However, when C has a C2
boundary with positive de�nite Hessian (see se
tion 3.1), FC is a Finsler

metri
. In this 
ase, the Hilbert geometry is 
alled regular and we 
an prove that its �ag-
urvature is


onstant equal to −1 ([16℄).

1.2. Main results. The de�nition of the Finsler�Lapla
e operator is re
alled in se
tion 2.2. As for the

Riemannian one, it is an unbounded ellipti
 operator on a Sobolev spa
e 
ontained in the L2
fun
tions.

As su
h, the Finsler Lapla
ian admits a spe
trum whi
h splits into a dis
rete part, whi
h, if non-empty,


onsists only of eigenvalues of �nite multipli
ity, and the essential spe
trum. In the 
ase at hand, there

will always be an essential spe
trum as we are 
onsidering non-
ompa
t manifolds.
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In hyperboli
 spa
e, the spe
trum of the Lapla
e�Beltrami operator is the interval

[

(n− 1)2/4,+∞
)

and, therefore, has no dis
rete part. In the 
ase of regular Hilbert geometries, we prove the following:

Theorem A. Let λ1(C) be the bottom of the spe
trum of the Finsler Lapla
ian of a regular Hilbert

geometry (C, dC). Then

0 < λ1(C) 6
(n− 1)2

4
.

Let us make some remarks about this theorem.

• A study of spe
tral gaps in (regular and non-regular) Hilbert geometries was already laun
hed

by the se
ond author and C. Verni
os [10, 21℄. The spe
tral gap they were 
onsidering turns out

to be asso
iated, in the regular 
ase, to the non-linear Lapla
ian introdu
ed by Z. Shen [20℄, and

their te
hniques and di�
ulties di�er from ours. In parti
ular, in [21℄, Verni
os proves that the

spe
tral gap he 
onsiders is also less than (n− 1)2/4, but the di�
ulties for his proof appear only

when 
onsidering non-regular Hilbert metri
s, 
ontrarily to us.

• For regular Hilbert metri
s the volume entropy is always equal to n − 1 [11℄. So, Theorem A

in parti
ular tells us that the inequality 4λ1 6 h2
, whi
h is true for all simply 
onne
ted non-

positively 
urved Riemannian manifolds, still holds for regular Hilbert geometries.

• In [2℄ the �rst author proved that, for negatively 
urved Finsler manifolds, the inequality 4λ1 6

nh2
holds, where n is the dimension of the manifold. For general non-
ompa
t negatively 
urved

Finsler manifolds, it is far from 
lear that the fa
tor n 
an be removed. In this arti
le, we prove

it for what we 
all asymptoti
ally Riemannian Finsler metri
s of whi
h Hilbert metri
s are a

ni
e example. This means that the Finsler metri
 gets in�nitely 
lose to Riemannian outside

su�
iently big 
ompa
t sets (see Se
tion 4).

Our se
ond result shows that the di�eren
e between regular Hilbert geometry and hyperboli
 geometry

does not appear in the essential spe
trum (or, at least, not in its in�mum):

Theorem B. The bottom of the essential spe
trum inf σ
ess

(C) of the Finsler Lapla
ian of a regular Hilbert

geometry (C, dC) satis�es

inf σ
ess

(C) = (n− 1)2

4
.

Below

(n−1)2

4 , the spe
trum of the Lapla
e operator is thus entirely dis
rete. It is then natural to ask

if there is always an eigenvalue below

(n−1)2

4 . We know that this does not happen in the hyperboli
 spa
e

and we make the following

Conje
ture. Let (C, dC) be a regular Hilbert geometry. The equality λ1(C) = (n−1)2

4 holds if and only if

C is an ellipsoid.

We are not yet able to prove this 
onje
ture, but we show the following:

Theorem C. Let ε > 0 and N ∈ N. There exists a regular Hilbert geometry whose �rst N eigenvalues

are below ε.

In parti
ular, we 
an �nd a regular Hilbert geometry with as many eigenvalues below the essential

spe
trum as we want. As the �ag 
urvature of regular Hilbert metri
s is always equal to −1, this gives
examples of Finsler metri
s of 
onstant negative 
urvature with eigenvalues as small as we want.

Stru
ture of this paper. In the preliminaries, we re
all the 
onstru
tion of the Finsler Lapla
ian and

its basi
 properties. We also introdu
e the Legendre transform that will be an important tool all along

the arti
le.

In Se
tion 3, we prove that regular Hilbert geometries are asymptoti
ally Riemannian, whi
h is an

interesting result in itself.

In Se
tion 4, we prove Theorem A by showing that the inequality λ1 6 h2/4 holds for asymptoti
ally

Riemannian metri
s.

After re
alling a few results about the essential spe
trum of weighted Lapla
ians, we prove Theorem B

in Se
tion 5.

We �nally 
onstru
t Hilbert metri
s with arbitrarily many small eigenvalues in Se
tion 6.
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2. Preliminaries

2.1. Topology on the set of Finsler metri
s on a manifold. In all the text, we will use the topology

of uniform 
onvergen
e on 
ompa
t sets for Finsler metri
s. Let M be a smooth manifold. We say that

a sequen
e of Finsler metri
s (Fn) on M 
onverges to the Finsler metri
 F if, for any 
ompa
t subset K
of M ,

lim
n→+∞

sup
(x,u)∈TM|K

∣

∣

∣

∣

ln
F (x, u)

Fn(x, u)

∣

∣

∣

∣

= 0,

where TM |K is the restri
tion of the tangent bundle to K. This indu
es a topology on the set of Finsler

metri
s on M , whi
h is metrizable: a distan
e between F and F ′

an be de�ned as

d(F, F ′) =
∑

n

1

2n
min

{

1, sup
(x,u)∈TM|Kn

∣

∣

∣

∣

ln
F (x, u)

F ′(x, u)

∣

∣

∣

∣

}

,

where (Kn) is an exhausting family of 
ompa
t subsets of M .

2.2. Finsler Lapla
ian. In this se
tion, we qui
kly re
all the de�nition of the Finsler Lapla
ian we


onsider, whi
h uses the formalism introdu
ed by Foulon [16℄. All the proofs and details 
an be found in

[2, 3℄.

LetM be an n-dimensional smooth manifold. Let HM be the homogeneous bundle or dire
tion bundle,

that is,

HM := (TM r {0}) /R+.

A point of HM is a pair 
onsisting in a point x ∈ M and a tangent dire
tion ξ at x. We denote by

r : TM r {0} → HM and π : HM → M the 
anoni
al proje
tions. The bundle V HM = Kerdπ ⊂ THM
is 
alled the verti
al bundle.

Let F be a Finsler metri
 on M . As for a Riemannian spa
e, the metri
 spa
e (M,F ) is lo
ally

uniquely geodesi
, the geodesi
s being de�ned through a se
ond-order di�erential equation. We assume

in the sequel that the Finsler metri
 is 
omplete. In this 
ase, its geodesi
 �ow is well de�ned on the

homogeneous bundle: given a point (x, ξ) in HM , there is a unique unit-speed geodesi
 c : R −→ M
passing at x with tangent dire
tion ξ at time 0.

The Hilbert form of F is the 1-form A on HM de�ned, for (x, ξ) ∈ HM , Z ∈ T(x,ξ)HM , by

(1) A(x,ξ)(Z) := lim
ε→0

F (x, v + εdπ(Z)) − F (x, v)

ε
,

where v ∈ TxM is any ve
tor su
h that r(x, v) = (x, ξ). The Hilbert form 
ontains all the ne
essary

information about the dynami
s of the Finsler metri
:

Theorem 2.1. The form A is a 
onta
t form: A∧dAn−1
is a volume form on HM . Let X : HM → THM

be the Reeb �eld of A, that is, the only solution of

(2)

{

A(X) = 1

iXdA = 0 .

The ve
tor �eld X generates the geodesi
 �ow of F .

We 
an now de�ne the Finsler Lapla
ian. First we split the 
anoni
al volume A∧dAn−1
into a volume

form on the manifold M and an angle form:

Proposition 2.2. There exists a unique volume form ΩF
on M and an (n− 1)-form αF

on HM , never

zero on V HM , su
h that

(3) αF ∧ π∗ΩF = A ∧ dAn−1,

and, for all x ∈ M ,

(4)

∫

HxM

αF = volEucl(S
n−1) .

Remark 2.3. The volume form

1
(n−1)!Ω

F
is the Holmes�Thompson volume form (see for instan
e [8℄

or [1℄ for the de�nition). However, we will not need in this arti
le any spe
i�
 knowledge about the

Holmes�Thompson volume.

The Finsler Lapla
ian of a fun
tion is then obtained as an average with respe
t to αF
of the se
ond

derivative in every dire
tion:
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De�nition 2.4. For f ∈ C2(M), the Finsler�Lapla
e operator ∆F
is de�ned by

∆F f(x) =
n

volEucl (Sn−1)

∫

HxM

L2
X(π∗f)αF , x ∈ M,

where LX denotes the Lie derivative in the dire
tion X.

This de�nition gives a se
ond order ellipti
 di�erential operator, whi
h is symmetri
 with respe
t to

the Holmes�Thompson volume ΩF
. The 
onstant in front of the operator is there in order to get ba
k

the usual Lapla
e�Beltrami operator when F is Riemannian.

The symbol of a se
ond-order di�erential operator ∆ is a symmetri
 bilinear form on the 
o-tangent

bundle that 
an be de�ned in the following way: Let ξ ∈ T ∗
xM , then the symbol of the operator ∆ at

(x, ξ) is
σx(ξ, ξ) = ∆(ϕ2)(x),

where ϕ : M → R is a C2
fun
tion su
h that ϕ(x) = 0 and dϕx = ξ.

When the operator is ellipti
, that is, when σx(ξ, ξ) > 0 for all non-zero ξ, the symbol de�nes a dual

Riemannian metri
. Note that in lo
al 
oordinates, the symbol is given by the matrix of the 
oe�
ients

in front of the se
ond order derivatives.

We denote by σF
the symbol of ∆F

, as ∆F
is ellipti
, σF

is a dual Riemannian metri
. In our 
ase,

we 
an express σF
using the form αF

: For ξ1, ξ2 ∈ T ∗
xM , we have

σF
x (ξ1, ξ2) =

n

volEucl (Sn−1)

∫

HxM

LX(π∗ϕ1)LX(π∗ϕ2)α
F ,

where ϕi ∈ C∞(M) su
h that ϕi(x) = 0 and dϕi x = ξi. Note that, if we identify HM with SFM , the

unitary tangent bundle for F , and that we 
onsider αF
as a volume form on SFM (instead of HM), we

have this visually more agreeable formula:

σF
x (ξ1, ξ2) =

n

volEucl (Sn−1)

∫

v∈SF
x M

ξ1(v)ξ2(v)α
F (v).

Note that we 
an also see ∆F
as a weighted Lapla
ian (introdu
ed in [9, 12℄), with symbol σF

and

weight given by the ratio between ΩF
and the Riemannian volume asso
iated with σF

. Indeed, we have

that, if a ∈ C∞(M) is su
h that ΩF = a2ΩσF

, where ΩσF

is the Riemannian volume asso
iated with σF
,

then for ϕ ∈ C∞(M):

∆Fϕ = ∆σF

ϕ− 1

a2
〈∇ϕ,∇a2〉.

The des
ription of ∆F
in terms of a weighted Lapla
ian will 
ome very handy for the study of the essential

spe
trum in Se
tion 5.

2.3. Energy and bottom of the spe
trum. The Finsler Lapla
ian has a naturally asso
iated energy

fun
tional de�ned by

(5) EF (f) :=
n

volEucl (Sn−1)

∫

HM

|LX (π∗f)|2 A ∧ dAn−1.

The Rayleigh quotient for F is then de�ned by

(6) RF (f) :=
EF (f)
∫

M
f2ΩF

.

Let H1(M) be the Sobolev spa
e de�ned as the 
ompletion of C∞
0 (M), the spa
e of smooth fun
tions

with 
ompa
t support, under the norm ‖f‖21 =
∫

M
f2ΩF + EF (f).

The bottom of the spe
trum of −∆F
, 
onsidered as a symmetri
 unbounded operator on H1(M), is

given by:

λ1 = inf
f∈H1(M)

RF (f),

Note that, as the manifolds we are interested in in this arti
le are not 
ompa
t, the spe
trum has no

reason to be dis
rete. However, if there is a dis
rete spe
trum below the essential one, then the eigenvalues


an be obtained from the Rayleigh quotient via the Min-Max prin
iple:

Theorem 2.5 (Min-Max prin
iple). Suppose that λ1, . . . , λk are the �rst k eigenvalues (
ounted with

multipli
ity) of −∆F
and are all below the essential spe
trum, then

λi = inf
Vi

sup
{

RF (u) | u ∈ Vi

}

where Vi runs over all the i-dimensional subspa
es of H1(M).
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2.4. Cotangent point of view. We �nish this preliminaries with the 
otangent point of view for Finsler

metri
s. This is fairly well-known and we refer to [2℄ for a more detailed presentation.

2.4.1. Dual metri
.

De�nition 2.6. Let F be a Finsler metri
 on a manifold M . The dual Finsler (
o)metri
 F ∗ : T ∗M → R

is de�ned, for (x, p) ∈ T ∗M , by

F ∗(x, p) = sup{p(v) | v ∈ TxM su
h that F (x, v) = 1}.
2.4.2. Legendre transform. The tool that allows us to swit
h from the tangent bundle to the 
otangent

bundle is the Legendre transform asso
iated with F .

De�nition 2.7. The Legendre transform LF : TM → T ∗M asso
iated with F is de�ned by LF (x, 0) =
(x, 0) and, for (x, v) ∈ TM r {0} and u ∈ TxM ,

LF (x, v)(u) :=
1

2

d

dt
F 2(x, v + tu)

∣

∣

∣

∣

t=0

.

As F 2
is positively 2-homogeneous, we have that LF is positively 1-homogeneous, that is, LF (x, λv)(u) =

λLF (x, v)(u) for λ > 0. So we 
an proje
t LF to the homogeneous bundle. Set H∗M := T ∗M r {0}/R+
∗

and write ℓF : HM → H∗M for the proje
tion. Considering dire
tly ℓF , instead of LF , 
an sometimes

be quite helpful.

The Legendre transform LF links the Finsler metri
 F with its dual metri
 F ∗

F = F ∗ ◦ LF .

So, in parti
ular LF maps the unit tangent bundle of F to the unit 
otangent bundle of F ∗
.

Moreover, the Legendre transform LF is a di�eomorphism and the following diagram 
ommutes (see

for instan
e [2℄):

T ∗M r {0} r̂ //

p̂

yyssssssssss
H∗M

π̂

""EE
EE

EE
EE

E

M M

TM r {0}

LF

OO

r
//

p

eeKKKKKKKKKK

HM

ℓF

OO

π

<<yyyyyyyyy

For strongly 
onvex smooth Finsler metri
s, the Legendre transform 
an also be des
ribed using 
onvex

geometry. The Legendre transform asso
iated with a 
onvex C ⊂ Rn
sends a point x of C to the hyperplane

supporting C at x, or equivalently, to the linear map p ∈ (Rn)∗ su
h that p(x) = 1 and ker p is parallel

to the supporting hyperplane.

2.4.3. Continuity of the Legendre transform. Let V be a n-dimensional real ve
tor spa
e

1

, with a �xed

Eu
lidean stru
ture whose norm we denote by F0 and see as a translation-invariant Finsler metri
 on V .

Let N denote the set of translation-invariant Finsler metri
s on V . This is the same as looking at the

set of non-ne
essarily symmetri
 norms on V , whose unit sphere is C2
with positive de�nite Hessian.

The topology de�ned in se
tion 2.1 indu
es a topology on N whi
h 
an be metrized in the following easy

way: Let HV = V r {0}/R+ ≃ Sn−1
be the set of rays from the origin. If F, F ′ ∈ N , the ratio

F
F ′ is a

well de�ned fun
tion of HV : if ξ ∈ HV , we have F
F ′ (ξ) =

F (u)
F ′(u) , where u is any ve
tor of V that proje
ts

to ξ. De�ne a metri
 on N by

dN (F, F ′) = sup
ξ∈HV

| ln F

F ′ (ξ)|.

We de�ne a metri
 D on the set Homeo0(V ) of positively 1-homogeneous homeomorphisms of V by:

D(H,H ′) = sup
u∈V, F0(u)=1

F0(H(u)−H ′(u)).

Identifying HV with the unit Eu
lidean sphere S
n−1

, we de�ne a metri
 d on the set Homeo(HV ) of
homeomorphisms of HV :

d(h, h′) = sup
ξ∈HV

dSn−1(h(ξ), h′(ξ)).

1

In this se
tion, we should think of a Finsler manifold (M,F ) with a �xed point x ∈ M . We look at the tangent spa
e

TxM as an n-dimensional real ve
tor spa
e, provided with a non-ne
essarily symmetri
 norm F (x, ·).
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This distan
e is just the maximal Eu
lidean angle between the images.

For ea
h F ∈ N , the Legendre transform LF is a positively 1-homogeneous homeomorphism of V and

its �proje
tion� ℓF a C1
-di�eomorphism of HV . We thus have appli
ations L : F 7−→ LF from N to

Homeo0(V ) and ℓ : F 7−→ ℓF from N to Homeo(HV ). The following lemma is immediate if we use the

geometri
al interpretation of the Legendre transform that we re
alled at the end of the previous se
tion.

Lemma 2.8. The appli
ation L is a 
ontinuous bije
tion from (N , dN ) to (Homeo0(V ), D). The ap-

pli
ation ℓ is 
ontinuous from (N , dN ) to (Homeo(HV ), d) but is not inje
tive: ℓF = ℓF ′
if and only if

F = λF ′
for some λ > 0.

Proof. Let us expli
it the 
ontinuity of ℓ at F0 be
ause this is all we need in this arti
le; the 
ontinuity

elsewhere follows the exa
t same lines.

Let F ∈ N su
h that dN (F0, F ) 6 lnC for some C > 1. We 
an see that d(ℓ−1
F ◦ ℓF0

, Id) 6 arccosC−2
.

Indeed, as dN (F0, F ) 6 lnC, the unit sphere SF (1) for F in V is in between the spheres of radius C−1

and C for F0, that we denote by S0(C
−1) and S0(C). Let ξ ∈ HV . The map ℓ−1

F ◦ ℓF0
sends ξ to a point

ξ′, su
h that the tangent spa
e of SF (1) at ξ
′
is parallel to the tangent spa
e of S0(C) at ξ. Figure 2 and

simple trigonometry then yield the result. �

ξ

S0(C
−1)

S0(C)

ℓ−1
F ◦ ℓF0

(ξ)

SF (1)

S0(C
−1)

S0(C)

Figure 2. Maximum angle between ℓ−1
F ◦ ℓF0

(ξ) and ξ

3. Behavior at infinity of Regular Hilbert geometries

In all the following, (C, dC) will be a regular Hilbert geometry. We will see here that (C, dC) is asymp-

toti
ally Riemannian, that is, the spa
e looks more and more like a Riemannian spa
e outside big 
ompa
t

sets:

De�nition 3.1. A Finsler metri
 F on a manifold M is 
alled asymptoti
ally Riemannian if, for any

C > 1, there exists a 
ompa
t set K su
h that, for all x ∈ M rK, there exists a s
alar produ
t gx on

TxM satisfying, for every non-zero ve
tor v ∈ TxM ,

C−1 6
F (x, v)
√

gx(v, v)
6 C

Remark 3.2. Note that, for this de�nition to be of any interest, M should be non-
ompa
t.

3.1. Hessian of a 
odimension-1 submanifold of the proje
tive spa
e. Consider a 
odimension-1
C2

submanifold N of the proje
tive spa
e RP
n
(for instan
e the boundary ∂C of a 
onvex set C), and

pi
k a point x ∈ N . Choose an a�ne 
hart 
ontaining x and a Eu
lidean metri
 on it. Let n be a unit

normal ve
tor to N at x for this metri
, that is a unit ve
tor orthogonal to TxN . Now, around x, we

onsider N as the graph of the fun
tion, de�ned on some neighborhood U of x in TxN :

Gx : u ∈ U 7−→ Gx(u) ∈ R,

su
h that a neighborhood of x in N is the submanifold {u+G(u).n, u ∈ U}. The Hessian of Gx at x is

a bilinear form on the tangent spa
e TxN . If one 
hooses an orthonormal basis (u1, · · · , un−1) of TxN ,



8 THOMAS BARTHELMÉ, BRUNO COLBOIS, MICKAËL CRAMPON, AND PATRICK VEROVIC

then the matrix of this bilinear form is the (n−1)×(n−1)matrix

(

∂2G
∂ui∂uj

)

of the se
ond-derivatives of G.

The de�nition of the Hessian obviously depends on the 
hoi
e of the a�ne 
hart and of the Eu
lidean

metri
. Nevertheless, there are two basi
 observations whi
h we will use all along this se
tion.

• The property of the Hessian of N at x to be positive, negative or de�nite, is independent of the


hoi
e of the a�ne 
hart and the Eu
lidean metri
. Hen
e, for example, it is possible to talk

about a 
onvex subset of RP
n
whose boundary is C2

with positive de�nite Hessian.

• Let N ′
be another 
odimension-1 C2

submanifold of RP
n
, whi
h is tangent to N at x. It makes

sense to say that N and N ′
have the same Hessian at x. Indeed, 
hoose an a�ne 
hart 
on-

taining x, a Eu
lidean metri
 on it, a unit ve
tor n normal to N at x and an orthonormal basis

(u1, · · · , un−1) of TxN = TxN
′
. Call Hx and H ′

x the Hessians of N and N ′
at x. The fa
t that

they are the same bilinear form on TxN does not depend on any of the previous 
hoi
es.

3.2. Busemann fun
tions, horospheres and horoballs. The Busemann fun
tion based at x ∈ ∂C is

de�ned by

bx(z, y) = lim
p→x

dC(z, p)− dC(y, p),

whi
h, in some sense, measures the (signed) distan
e from z to y in C as seen from the point x ∈ ∂C. A
parti
ular expression for b is given by

bx(z, y) = lim
t→+∞

dC(z, γ(t))− t,

where γ is the geodesi
 leaving y at t = 0 to x. When x is �xed, then bx is a surje
tive map from C × C
onto R. When z and y are �xed, then b.(z, y) : ∂C → R is bounded by a 
onstant C = C(z, y).

The horosphere passing through z ∈ C and based at x ∈ ∂C is the set

Hx(z) = {y ∈ C, bx(z, y) = 0}.
Hx(z) is also the limit when p tends to x of the metri
 spheres S(p, dC(p, z)) about p passing through z.
In some sense, the points on Hx(z) are those whi
h are as far from x as z is.

The (open) horoball Hx(z) de�ned by z ∈ C and based at x ∈ ∂C is the �interior� of the horosphere

Hx(z), that is, the set
Hx(z) = {y ∈ C, bx(z, y) > 0}.

For example, if E is an ellipsoid, then the horoballs of (E , dE ) are also ellipsoids. We explain this fa
t

in the proof of the following lemma. This proof will introdu
e the main 
onstru
tion whi
h helps us in

understanding the asymptoti
 behavior of Hilbert geometries.

Lemma 3.3. Let (C, dC) be a regular Hilbert geometry.

• For any x ∈ ∂C, the Busemann fun
tion bx : C × C → R is a C2
fun
tion.

• Let x ∈ ∂C, z ∈ C. The set Hx(z) ∪ {x} is a C2
submanifold of RP

n
, whose Hessian at x is the

same as the Hessian of ∂C.
Proof. The �rst point follows from the following des
ription of the Busemann fun
tion bx(z, y), given by

Benoist in [5℄. Let z′ and y′ be the interse
tion points of the lines (xz) and (xy) with ∂C, whi
h are

distin
t from x. Let p be the interse
tion point of (y′z′) with Tx∂C. Then

bx(z, y) =
1

2
ln[(px) : (pz′) : (pz) : (py)],

where [(px) : (pz′) : (pz) : (py)] denotes the 
ross-ratio of the four lines (px), (pz′), (pz), (py). All these


onstru
tions involve only the boundary of C, so the Busemann fun
tion has the same regularity as ∂C.
This �rst point implies that horospheres are C2

submanifolds of C.

To prove the se
ond point, we �rst 
onsider the 
ase of an ellipsoid E . The Hilbert geometry (E , dE )
is a model of the Riemannian hyperboli
 spa
e. We will exploit the fa
t that, for any x ∈ ∂E , ∂E or any

horosphere based at x is an orbit of a maximal paraboli
 group of isometries �xing x. We have to prove

that the Hessians are the same in all the dire
tions, so we 
an assume the dimension is 2.
Let then E be an ellipsoid in RP

2
and pi
k x ∈ ∂E . We 
an 
hoose a proje
tive basis (e1, e2, e3) su
h

that e1 = x, e2 ∈ Tx∂E and the maximal paraboli
 group of isometries �xing x is given by P = {gt ∈
SL(3,R), t ∈ R} with





1 t t(t−1)
2

0 1 t
0 0 1



 .
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The boundary ∂E , as well as any horosphere H based at x is the P-orbit of the point z = e1 + se3 for

some s ∈ Rr {0}, that is, an ellipse parametrized by

t 7−→ [1 + s
t(t− 1)

2
: st : s].

In the a�ne 
hart given by the interse
tion with the plane {(x1, x2, x3) ∈ R
3, x1 = 1}, with origin x and

the indu
ed Eu
lidean metri
 of R3
, this is the 
urve

t 7−→
(

t
1
s + t(t−1)

2

,
1

1
s + t(t−1)

2

)

.

By making the transformation t 7−→ 1/t, this be
omes the 
urve

c : t 7−→
(

t
t2

s + 1−t
2

,
t2

t2

s + 1−t
2

)

,

su
h that c(0) = x. But for t around 0, we have up to order 2:

c(t) ∼ (2t(1 + t), 2t2).

This implies that the 
urvature of the 
urve c at 0 is independent of s, and hen
e, that, for ellipsoids, the

Hessian of the horospheres are all the same at x.

Now, let (C, dC) be a regular Hilbert geometry. Pi
k x ∈ ∂C, and z ∈ C. Fix an a�ne 
hart 
entered

at x, 
ontaining C, and �x a Eu
lidean metri
 | · | on it su
h that |zx| = 1 and the Hessian Bx of ∂C at x
is the restri
tion of the Eu
lidean s
alar produ
t to Tx∂C.
Fix C > 1. Consider the Eu
lidean spheres S+

x and S−
x , whose boundaries are tangent to ∂C at x

and Hessians B+
x and B−

x at the point x, seen as elements of GL(n − 1,R), satisfy B−
x = CBx and

B+
x = C−1Bx (this does not depend on the Eu
lidean metri
 we use to 
ompute them). For C 
lose

enough to 1, the balls E−
x and E+

x they de�ne 
ontain the point z.
Let h

−
x and h

+
x be the hyperboli
 metri
s de�ned by the balls E−

x and E+
x . There is some neighborhood

U of x in Rn
, depending on C, su
h that, on U ∩ E−

x , we have

h
+
x 6 FC 6 h

−
x .

Denote by H−
x (z), H+

x (z) and Hx(z) the horoballs based at x passing through z for the Hilbert geometries

de�ned by E−
x , E+

x and C respe
tively. The previous inequality implies that

H−
x (z) ∩ U ⊂ Hx(z) ∩ U ⊂ H+

x (z) ∩ U.

Now, by the result for ellipsoids, the Hessians B+
x (z) and B−

x (z) at the point x of the boundaries of

H+
x (z) and H−

x (z) also satisfy B−
x (z) = CBx and B+

x (z) = C−1Bx. This means the horospheres H−
x (z)

and H+
x (z) are �almost� os
ulating for Hx(z). Sin
e C > 1 is arbitrary, we see that the horosphere Hx(z)

and ∂C have the same Hessians at x. �

3.3. Hilbert geometries are asymptoti
ally Riemannian.

Proposition 3.4. Let (C, dC) be a regular Hilbert geometry, �x a point o ∈ C and a 
onstant C > 1. To

ea
h x ∈ ∂C, we 
an asso
iate a (non-
omplete) Riemannian hyperboli
 metri
 hx on C su
h that

(1) the appli
ation x 7−→ hx is 
ontinuous;

(2) the metri
 hx has the same geodesi
s as FC on C;
(3) there is R = R(C) > 0 su
h that, for any x ∈ ∂C and z ∈ [ox) rB(o,R),

C−1
6

FC(z, ·)
hx(z, ·)

6 C.

Proof. We more or less repeat the 
onstru
tion used in Lemma 3.3. By 
hoosing an adapted a�ne 
hart,

we look at C as a relatively 
ompa
t subset of a Eu
lidean spa
e Rn
, with norm | · |.

Let x ∈ ∂C. The Hessian of ∂C at x, 
omputed with respe
t to the metri
 | · |, gives a positive de�nite

bilinear form Bx on Tx∂C, and the map x 7−→ Bx is 
ontinuous. De�ne a new Eu
lidean norm | · |x on

Rn
by setting:

• the ve
tor ox has norm 1: |ox|x = 1;
• the restri
tion of the 
orresponding s
alar produ
t to Tx∂C is Bx;

• Tx∂C and ox are orthogonal.
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The map x 7−→ | · |x is 
ontinuous. The sphere Sx of radius 1 for the norm | · |x, with 
enter o, is tangent
to C at x; in fa
t, it is an os
ulating sphere.

Let ε > 0, and 
onsider the spheres S+
x and S−

x of respe
tive radius 1 + ε and 1 − ε for | · |x, whose
boundaries are tangent to ∂C at x. Their 
enters are on the line (ox). Their Hessians B+

x and B−
x , seen as

elements of GL(n−1,R), at the point x satisfy B+
x = 1−ε

1+εB
−
x (and this does not depend on the Eu
lidean

metri
 we use to 
ompute them).

Now, let E+
x be the smallest ellipsoid whi
h 
ontains C, has x in its boundary, and su
h that S+

x is a

horosphere at x of the hyperboli
 geometry de�ned by E+
x . In other words, it is the smallest ellipsoid

whi
h 
ontains C, is tangent to ∂C at x, has its 
enter on (ox) and the Hessian of its boundary at x is

the same as the Hessian of S+
x . Su
h an ellipsoid exists in the proje
tive spa
e be
ause lo
ally around

x, S+
x 
ontains C. However, it might not be an ellipsoid in the a�ne 
hart, but 
ould for instan
e be a

paraboloid or a hyperboloid.

In the same way, let E−
x be the largest horosphere at x of the Hilbert geometry de�ned by S−

x whi
h is


ontained in C. We also have that the Hessian of the boundary of E−
x at x is the same as the Hessian of

S−
x .

Let h
−
x and h

+
x be the hyperboli
 metri
s de�ned by the ellipsoids E−

x and E+
x . By de�nition, we have

that, on E−
x ,

h
+
x 6 FC 6 h

−
x .

We will prove that, for ε small enough, the appli
ation x 7−→ h
+
x satis�es the desired properties. The

property (2) is obvious. To prove (1), we show the following

Lemma 3.5. The maps x 7−→ E±
x are 
ontinuous.

Proof. We show the 
ontinuity of x 7−→ E−
x at a given point x0 ∈ ∂C, the same works for x 7−→ E+

x .

Choose a point p in E−
x0

and let r ∈ R su
h that E−
x0

is the horoball

E−
x0

= {z ∈ C, bx0
(o, z) > r}

in the hyperboli
 geometry de�ned by S+
x0
. For any δ ∈ R, let E−

x (δ) be the (open) horoball

E−
x (δ) = {z ∈ C, bx(o, z) > r + δ}

in the hyperboli
 geometry de�ned by S+
x . For any δ > 0, the maps x 7−→ E−

x (δ) are 
ontinuous, be
ause
of the 
ontinuity of the Busemann fun
tions. Fix δ > 0. The horoball E−

x0
(δ) is entirely 
ontained in C

while the horoball E−
x0
(−δ) has a nonempty interse
tion with RP

n
r C. By 
ontinuity of x 7−→ E−

x (δ), the
same is true for E−

x (δ) and E−
x (−δ) for x in some neighborhood of x0. By de�nition of E−

x , this implies

that E−
x (δ) ⊂ E−

x ⊂ E−
x (−δ) in this neighborhood, hen
e the 
ontinuity of x 7−→ E−

x at x0. �

To prove the third point, we 
onsider, for x ∈ ∂C and u ∈ Rn r {0}, the fun
tion

fx,u : r 7−→ h
−
x (or, u)

h
+
x (or , u)

,

where or is the point of [ox) su
h that dC(or, o) = r. The fun
tion fx,u is de�ned as soon as r is big

enough for or to be in E−
x . Remark that fx,u = fx,λu for all u ∈ Rn r {0}, λ 6= 0.

Lemma 3.6. For u ∈ R.ox r {0}, the fun
tion fx,u is de
reasing and tends to 1. For u ∈ Tx∂C r {0},
the fun
tion fx,u is de
reasing and tends to

√

1+ε
1−ε .

Proof. We 
an 
hoose another a�ne 
hart, with 
oordinates (t1, . . . , tn−1, s), so that the boundary of E+
x

is the parabola s = |t|2, where |t|2 = t21 + · · · + t2n−1. In that 
hart, the boundary of E−
x has to be an

ellipsoid inside of E+
x , and the line (ox), whi
h is an axis of symmetry for both E+

x and E−
x , is sent to the

y-axis. The equation of E−
x is then given by

s2

a2
− 2s

a
+

|t|2
b2

= 0,

for some a, b > 0.
Let s = s(r) = |orx|. If u ∈ R.oxr {0}, we have (see Figure 3)

h
−
x (or, u) =

a|u|
s(2a− s)

, and h
+
x (or, u) =

|u|
2s

.

Hen
e

fx,u(r) =
2a

2a− s(r)
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whi
h is de
reasing and tends to 1.
If u ∈ Tx∂C, then (see Figure 3)

h
−
x (or , u) =

a|u|
b
√

s(2a− s)
, and h

+
x (or, u) =

|u|√
s
.

Hen
e

fx,u(r) =
a

b
√

2a− s(r)
,

whi
h is de
reasing and tends to

√
a

b
√
2
. Now, dire
t 
omputations shows that in this 
hart, B−

x = a/b2

and B+
x = 2, hen
e, fx,u(r) 
onverges to

√

B−
x (B+

x )−1 =
√

1+ε
1−ε > 1. �

s

t

E+
x : s = |t|2E−

x : s2

a2 − 2s
a + |t|2

b2 = 0

b b b
or

b b

b

b

x

Figure 3. The ellipsoids E+
x and E−

x in a well-
hosen 
hart

As a 
onsequen
e of this lemma, we see that there exists R > 0, depending on x and ε, su
h that for

r > R, we have fx,u(r) 6

√

1+ε
1−ε + ε for u ∈ Tx∂C r {0} or u ∈ R.ox r {0}. Let us de�ne R(ε, x) as

the smallest R > 0 satisfying this property. Now, the 
ontinuity of the fun
tions x 7→ h
±
x (Lemma 3.5)

implies that the fun
tion x 7→ R(ε, x) is also 
ontinuous. Hen
e, if we set

R(ε) := sup
x∈∂C

R(ε, x),

we have that for any x ∈ ∂C and r > R(ε), fx,u(r) 6
√

1+ε
1−ε + ε for u ∈ Tx∂C r {0} or u ∈ R.ox r {0}.

Now, ea
h u ∈ Rn

an be de
omposed as u = u1 + u2 with u1 ∈ Tx∂C and u2 ∈ R.ox. Remark that u1

and u2 are orthogonal for h
+
x as well as for h

−
x , so that

h
±
x (or, u) =

√

h
±
x (or , u1)2 + h

±
x (or, u2)2.

For r > R(ε), we have

fx,u(r) =
h
−
x (or, u)

h
+
x (or, u)

=

√

h
−
x (or , u1)2 + h

−
x (or, u2)2

h
+
x (or , u1)2 + h

+
x (or, u2)2

6

√

1 + ε

1− ε
+ ε, u ∈ R

n
r {0}.

That means that for any x ∈ ∂C and z ∈ [ox) su
h that dC(o, z) > R(ε), we have

1 6
FC(z, ·)
h
+
x (z, ·)

6
h
−
x (z, ·)

h
+
x (z, ·)

6

√

1 + ε

1− ε
+ ε.

This proves property (3). �

So we get that Hilbert geometries are asymptoti
ally Riemannian:

Corollary 3.7. Let (C, dC) be a regular Hilbert geometry and o ∈ C a base point. For any C > 1, there
exists R > 0 and a 
ontinuous Riemannian metri
 g on C rB(o,R) su
h that C−1√g 6 FC 6 C

√
g.
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Proof. Take the metri
 g given for z ∈ CrB(o,R) by
√
gz = hz+

, where z+ = [oz)∩∂C, and hz+
is given

by the last lemma. �

We will need the following version of Proposition 3.4 in se
tion 5:

Corollary 3.8. Let (C, dC) be a regular Hilbert geometry. To ea
h x ∈ ∂C, we 
an asso
iate a (non-


omplete) Riemannian hyperboli
 metri
 hx de�ned on an open neighborhood Ox of [ox) whi
h satis�es

the following properties.

(1) The appli
ation x 7−→ hx is 
ontinuous.

(2) We have

⋃

x∈∂C
Ox = C.

(3) The metri
 hx has the same geodesi
s as FC on Ox.

(4) Let C > 1 and

Ux(C) =

{

z ∈ Ox, C−1
6

FC(z, ·)
hx(z, ·)

6 C

}

.

There exists R = R(C) su
h that, for any x ∈ ∂C, the interse
tion of Ux(C) with C r B(o,R) is

an open neighborhood of [ox) in C rB(o,R). In parti
ular, we have C rB(o,R) ⊂
⋃

x∈∂C
Ux(C).

Proof. We use the obje
ts introdu
ed in the proof of Proposition 3.4. We let hx be the metri
 de�ned

by the os
ulating sphere Sx at x whi
h 
enter is o. This is a metri
 on Ox = Ex ∩ C, whi
h is an open

neighborhood of [ox). It is immediate that hx and Ox satisfy the �rst three points. For the fourth one,

pi
k ε > 0 and 
onsider the ellipsoids E+
x and E−

x whi
h depend on ε. Remark that, as E−
x ⊂ Sx ⊂ E+

x

and E−
x ⊂ C ⊂ E+

x , we always have

h
+
x (z, ·)

h
−
x (z, ·)

6
FC(z, ·)
hx(z, ·)

6
h
−
x (z, ·)

h
+
x (z, ·)

,

for all z ∈ E−
x .

Now, we proved above that there is some R(ε) > 0 su
h that, for all z ∈ [ox) rB(o,R(ε)),

h
−
x (z, ·)

h
+
x (z, ·)

6

√

1 + ε

1− ε
+ ε.

Hen
e the interse
tion of the set Ux

(√

1+ε
1−ε + 2ε

)

with CrB(o,R(ε)) is an open neighborhood of [ox)

in C rB(o,R(ε)). Sin
e ε > 0 is arbitrary, this proves the fourth point. �

Remark 3.9. Note that the metri
 hx in this Corollary is di�erent from the one in in Proposition 3.4. In

parti
ular, the metri
 hx of the Corollary is independent of C.

4. Bottom of the spe
trum for asymptoti
ally Riemannian metri
s

Let F be a C2
Finsler metri
 on a manifold M . Let ΩF

be the Holmes�Thompson volume for F . The
volume entropy h of F is de�ned by

h := lim sup
R→+∞

1

R
ln

∫

BF (R)

ΩF .

In this se
tion, we will show the following

Theorem 4.1. Let F be an asymptoti
ally Riemannian C2
Finsler metri
 on a n-manifold M . Let h be

the volume entropy of F and λ1 be the bottom of the spe
trum of the Finsler Lapla
ian −∆F
. Then,

λ1 6 h2/4.

The idea of the proof of Theorem 4.1 follows the Riemannian one: we show that we 
an 
hoose s su
h
that the fun
tion e−sd(O,x)

has a Rayleigh quotient as 
lose as we want to h2/4. The di�
ulty is in the


ontrol of the Rayleigh quotient. In Se
tion 4.1 we show how we 
an manage to 
ontrol the Rayleigh

quotient by 
ontrolling the symbol of the Finsler Lapla
ian.

As we proved that regular Hilbert geometries are asymptoti
ally Riemannian (Corollary 3.7), and we

know that the volume entropy is n− 1 ([11℄), we dedu
e the upper bound in Theorem A:

Corollary 4.2. Let (C, dC) be a regular Hilbert geometry. Let λ1 be the bottom of the spe
trum of the

Finsler Lapla
ian −∆FC
. Then

λ1 6
(n− 1)2

4
.
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Note that, for generi
 asymptoti
ally Riemannian Finsler metri
s, we do not always have λ1 > 0,
even when the volume entropy is positive. Indeed, there exists examples of Riemannian metri
s on the

universal 
over of a manifold su
h that the volume entropy is positive and λ1 = 0 (for instan
e the

solvmanifold des
ribed in [7℄). However, in the 
ase of regular Hilbert metri
s, this is not possible as the

next lemma asserts, whi
h gives the lower bound of Theorem A.

Lemma 4.3. Let (C, dC) be a regular Hilbert geometry. Let λ1 be the bottom of the spe
trum of the

Finsler Lapla
ian −∆FC
. Then λ1 > 0.

Proof. By [11℄, we know that a regular Hilbert metri
 is bi-Lips
hitz equivalent to the hyperboli
 spa
e,

so, by [4, Theorem 4℄ (that we re
all below) and the Min-Max prin
iple, we dedu
e that the λ1 of FC is

bounded below by C−1(n−1), where C > 1 is a 
onstant depending on n and the bi-Lips
hitz 
ontrol. �

Theorem 4.4 (Barthelmé�Colbois [4℄). Let F and F0 be two Finsler metri
s on an n-manifold M .

Suppose that there exists C > 1 su
h that, for any (x, v) ∈ TM r {0},

C−1 ≤ F (x, v)

F0(x, v)
≤ C.

Let C1 and C2 be the quasireversibility 
onstants of F and F0 respe
tively. Then, there exists a 
onstant

K ≥ 1, depending on C, C1, C2 and n, su
h that, for any f ∈ H1(M),

C−K ≤ EF (f)

EF0(f)
≤ CK .

Note that in [4℄ this Theorem is stated for M 
ompa
t, but stays true for non-
ompa
t manifolds

without any 
hange to the proof.

4.1. Control of the symbol for pointwise bi-Lips
hitz metri
s. In this se
tion we prove that,

given a bi-Lips
hitz 
ontrol of a Finsler metri
 by a Riemannian one, we 
an 
ontrol the symbol of the

Finsler Lapla
ian by the dual Riemannian metri
. Note that this result is not as 
lear as in Riemannian

geometry, as the symbol of the Finsler Lapla
ian a priori depends on derivatives of the Finsler metri
.

Proposition 4.5. Let F be a Finsler metri
 on a n-manifold M , x ∈ M , and gx a s
alar produ
t on

TxM . Suppose that there exists C > 1 su
h that, for all v ∈ TxM r {0},

C−1 6
F (x, v)
√

gx(v, v)
6 C.

Then there exists a 
onstant C′ > 1, depending only on C and n, su
h that, for all p ∈ T ∗
xM ,

C′−1 6
σF (p, p)

g∗x(p, p)
6 C′.

Furthermore,

lim
C→1

C′(C, n) = 1.

In [4℄ the �rst two authors gave a proof of the existen
e of a C′
satisfying the inequality, but not the

limit 
ondition. Hen
e, we here do the proof with a bit more 
are to ensure this se
ond 
ondition.

Let us �x a C2
Riemannian metri
 F0 on M su
h that F0(x, ·) = ‖·‖gx . Let X0 and X be the geodesi


ve
tor �elds asso
iated with F0 and F respe
tively. There exists a fun
tion m : M → (0,+∞) and a

verti
al ve
tor �eld Y : HM → V HM su
h that X = mX0 + Y . A
tually, we have m = F0

F .

Before going on to the proof, we start by stating some results that we will need (the proofs are quite

elementary and 
an be found in [4℄):

Lemma 4.6. Let F and F0 be two Finsler metri
s on M , X and X0 the asso
iated geodesi
 ve
tor �elds.

Let m : HM −→ R be the fun
tion m = F0

F and µ : M −→ R be de�ned by

µ(x) :=
(

volEucl

(

S
n−1
))−1

∫

H∗
xM

(

F ∗
0

F ∗

)n
(

ℓ−1
F0

)∗
αF0 , x ∈ M.

Then X = mX0 + Y for some verti
al ve
tor �eld Y ∈ V HM , ΩF = µΩF0
and

αF
(x,ξ) =

1

µ(x)

(

F ∗
0

F ∗ (ℓF (ξ))

)n
(

ℓ−1
F0

◦ ℓF
)∗

αF0

(x,ξ).



14 THOMAS BARTHELMÉ, BRUNO COLBOIS, MICKAËL CRAMPON, AND PATRICK VEROVIC

Lemma 4.7. Let F and F0 be two Finsler metri
s on a n-manifold M . Suppose that for some x ∈ M ,

there exists C > 1 su
h that, for any v ∈ TxM r {0},

C−1
6

F (x, v)

F0(x, v)
6 C.

Then for any v ∈ TxM r {0}, ξ ∈ HxM , we have

C−1 6
F ∗(x, v)
F ∗
0 (x, v)

6 C,(7)

C−n 6 µ(x) 6 Cn,(8)

C−1 6 m(x, ξ) 6 C.(9)

Note that the result was stated in [4℄ for a uniform bi-Lips
hitz 
ontrol (that is, C was supposed not

to depend on x ∈ M), but the proof stays exa
tly the same in this 
ase of pointwise bi-Lips
hitz 
ontrol.

Proof of Proposition 4.5. Let p ∈ T ∗
xM r {0} be �xed. Let ‖·‖g∗

x
be the norm on T ∗

xM dual to the s
alar

produ
t gx. We suppose that ‖p‖g∗
x
= 1. Let φ : M → R be a smooth fun
tion su
h that φ(x) = 0 and

dφx = p. Then the norm of p for the symbol metri
 σF
is

‖p‖2σF =
n

volEucl (Sn−1)

∫

HxM

(LXπ∗φ)2 αF .

Let us write cn := n
(

volEucl

(

S
n−1
))−1

.

Let F0 be a C2
Riemannian metri
 su
h that F0(x, ·) = ‖·‖gx . Let X0 and X be the geodesi
 ve
tor

�elds asso
iated with F0 and F respe
tively. There exists m : M → R and Y : HM → V HM su
h that

X = mX0 + Y , so, using Lemma 4.6 and the 
hange of variable formula, we get

‖p‖2σF = cn

∫

HxM

m2 (LX0
π∗φ)2

(

ℓ−1
F0

◦ ℓF
)∗
[

µ−1

(

F ∗
0

F ∗ ◦ ℓF0

)n

αF0

]

= cn

∫

HxM

(

m ◦ ℓ−1
F ◦ ℓF0

)2 (
LX0

π∗φ ◦ ℓ−1
F ◦ ℓF0

)2
µ−1

(

F ∗
0

F ∗ ◦ ℓF0

)n

αF0 .

Now, using Lemma 4.7, we have that

‖p‖2σF 6 cnC
2n+2

∫

HxM

(

LX0
π∗φ ◦ ℓ−1

F ◦ ℓF0

)2
αF0 ,

‖p‖2σF > cnC
−2n−2

∫

HxM

(

LX0
π∗φ ◦ ℓ−1

F ◦ ℓF0

)2
αF0 .

That means we have

‖p‖2σF

‖p‖2
σF0

6 C2n+2

∫

S
F0
x M

p(L−1
F ◦ LF0

(u))2αF0(u)

∫

S
F0
x M

p(u)2αF0 (u)

.

But, by 
ontinuity of L (Lemma 2.8), we have L−1
F ◦ LF0

(u) = u + ε(u) with F0(ε(u)) 6 ε(C), where
C 7−→ ε(C) is a 
ontinuous fun
tion su
h that ε(0) = 0. This gives

p(L−1
F ◦ LF0

(u))2 = (p(u) + p(ε(u)))2 6 p(u)2 + p(ε(u))2 + |2p(u)p(ε(u))|

and |p(ε(u))| 6 ε(C)‖p‖σF0 . So we get, using Cau
hy-S
hwarz inequality,

‖p‖2σF

‖p‖2
σF0

6
C2n+2

‖p‖2
σF0

(

(1 + ε(C))‖p‖2σF0
+ 2

(∫

S
F0
x M

p(u)2αF0(u)

)1/2(∫

S
F0
x M

p(ε(u))2αF0(u)

)1/2
)

6 C2n+2(1 + 2ε(C)).

The same 
omputations also gives the lower bound. �
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4.2. λ1 and volume entropy. We prove here Theorem 4.1. Let o be a base point on M . For any

x ∈ M , de�ne ρ(x) := d(o, x), with d the Finslerian distan
e.

Claim 4.8. For any s ∈ R su
h that 2s > h, we have e−sρ(·) ∈ L2
(

M,ΩF
)

.

Proof. This fa
t is straightforward, just using the de�nition of the volume entropy. �

Choose C > 1. As F is asymptoti
ally Riemannian, there exists a 
ompa
t subset KC of M and, for

any x ∈ M rKC , a s
alar produ
t gx on TxM su
h that, for any v ∈ TxM r {0},

C−1 6
F (x, v)
√

gx(v, v)
6 C.

Now let R(C) > 0 su
h that the Finslerian metri
 ball BF (o,R(C)) ⊂ M , of 
enter o and radius R(C),

ontains KC . Set

fC(x) :=

{

e−sR(C)
if x ∈ BF (o,R(C))

e−sρ(x)
if x ∈ M rBF (o,R(C)).

We will start by giving an upper bound on the energy of fC . Let ‖·‖σF be the norm given by the symbol

of F . We have

EF (fC) =
n

volEucl(Sn−1)

∫

HM

(LXπ∗f)2 A ∧ dAn−1 =

∫

M

‖df‖2σFΩF .

Hen
e, if we set UC := M r BF (o,R(C))

EF (fC) =

∫

UC

s2‖dρx‖2σF
x
e−2sρ(x)ΩF (x).

Now, by Proposition 4.5, there exists C′ > 1 su
h that, for any x ∈ UC ,

‖dρx‖σF
x
6 C′‖dρx‖g∗

x
6 CC′‖dρx‖F∗

x
,

where the last inequality holds be
ause a C-bi-Lips
hitz 
ontrol of two Finsler metri
s implies a C-bi-
Lips
hitz 
ontrol of their dual metri
s (see for instan
e [4℄).

By de�nition,

‖dρx‖F∗,x = sup{dρx(v) | v ∈ TxM,F (x, v) = 1} = 1,

be
ause ρ is the distan
e fun
tion of F .
So we have obtained that

EF (fC) 6 s2C2C′2
∫

UC

e−2sρ(x)ΩF (x).

We also have that

∫

M

fC(x)
2ΩF (x) =

∫

BF (o,R(C))

e−2sR(C)ΩF (x) +

∫

UC

e−2sρ(x)ΩF (x) >

∫

UC

e−2sρ(x)ΩF (x).

Therefore,

RF (fC) =
EF (fC)

∫

M fC(x)2ΩF (x)
6

s2C2C′2 ∫
UC

e−2sρ(x)ΩF (x)
∫

UC
e−2sρ(x)ΩF (x)

= s2C2C′2.

This is true for any s > h/2 and any C > 1. Sin
e limC→1 C
′ = 1, we get

λ1 = inf
f∈L2(M,ΩF )

RF (f) 6
h2

4
.

This �nishes the proof of Theorem 4.1.

4.3. Diri
hlet spe
trum. By a slight modi�
ation of the above proof, we 
an show that the same

bound holds for the �rst Diri
hlet eigenvalue of an asymptoti
ally Riemannian manifold M from whi
h

we removed a 
ompa
t set K, provided that we know that the fun
tion e−hρ(x)/2
is not in L2(M). For a

general (asymptoti
ally) Riemannian manifold, this is probably not true. But it is true for example on

the universal 
over of a 
ompa
t negatively 
urved Riemannian manifold: in this 
ase, Margulis [17, 18℄

proved that, when R goes to in�nity, the area of the sphere of radius R is equivalent to CehR, for some


onstant C > 0, whi
h allows to 
on
lude. We will see below that this argument also applies to regular

Hilbert geometries.

Re
all that if K is a 
ompa
t sub-manifold of M of the same dimension, the Diri
hlet spe
trum on

M rK is the spe
trum of the operator −∆F
seen on the spa
e obtained by 
ompletion of C∞

0 (M rK),
the spa
e of smooth fun
tions with 
ompa
t support in M r K, under the norm given by the sum of
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the L2-norm and the energy. The �rst eigenvalue 
an still be obtained via the in�mum of the Rayleigh

quotient.

Corollary 4.9. Let (M,F ) be an asymptoti
ally Riemannian manifold and K a 
ompa
t sub-manifold

of M of the same dimension. Let λ1(M rK) be the bottom of the Diri
hlet spe
trum of −∆F
on M rK.

Let o ∈ M and ρ(x) := d(o, x). If the fun
tion x 7−→ e−hρ(x)/2
is not in L2(M), then

λ1(M rK) 6
h2

4
.

Proof. We use the same notations as above: Let C > 1, and R(C) be su
h that, outside of B(o,R(C)),
F is C-bi-Lips
hitz to a Riemannian metri
. By 
hoosing a larger R(C) if ne
essary, we 
an assume that

K ⊂ B(o,R(C)). Now, we just need to modify a tiny bit our test fun
tion fC from above so that it is

zero on ∂K, and show that the Rayleigh quotient is still as 
lose to h2/4 as we want.

Let fC be a fun
tion su
h that

fC(x) :=

{

0 if x ∈ ∂K

e−sρ(x)
if x ∈ M rBF (o,R(C)),

and, furthermore,

∫

BF (o,R(C))rK

‖dfC‖2σF ΩF
6 1.

Su
h a fun
tion exists if R(C) is large enough.
Hen
e, if we set again UC := M rBF (o,R(C)), we obtain as above that

EF (fC) 6 1 + s2C2C′2
∫

UC

e−2sρ(x) ΩF (x).

Thus,

RF (fC) 6
1

∫

M e−2sρ(x) ΩF (x)
+ s2C2C′2

Now, as x 7−→ e−hρ(x)/2
is not in L2(M), 2s 
an be taken 
lose enough to h, so that

∫

M
e−2sρ(x)ΩF (x)

arbitrarily large. Finally, as C 
an be taken arbitrarily 
lose to 1 and limC→1 C
′(C) = 1, we obtain that

inf RF (fC) ≤
h2

4
,

whi
h ends the proof. �

Using this, we 
an now prove the 
orresponding result about regular Hilbert geometries, whi
h will be

useful to 
ompute the bottom of the essential spe
trum in the next se
tion.

Corollary 4.10. Let (C, dC) be a regular Hilbert geometry and K be a 
ompa
t subset of C with smooth

boundary. Let λ1(C rK) be the bottom of the Diri
hlet spe
trum of −∆FC
on C rK. Then

λ1(C rK) 6
(n− 1)2

4
.

Proof. Let o ∈ C and ρ(x) := dC(o, x). Thanks to 
orollary 4.9, we only have to show that the fun
tion

x 7−→ e−(n−1)ρ(x)/2
is not in L2(C,ΩFC).

In [11℄, the se
ond and fourth authors gave a pre
ise evaluation of the volume form of a regular Hilbert

geometry. Their 
omputations imply in parti
ular that there exists some 
onstant C > 0 su
h that, for

any measurable fun
tion f : [0,+∞) −→ R,

∫

f ◦ ρ ΩFC > C

∫ +∞

0

f(r)e(n−1)R dr.

(See the proof of Theorem 3.1 in [11℄. The 
omputations are done for the Busemann�Hausdor� volume,

but the ratio between Busemann�Hausdor� and Holmes�Thompson volumes is uniformly bounded, with

bounds depending only on the dimension (see for instan
e [8℄), so their result applies.)

The 
on
lusion is immediate:

∫

e−(n−1)ρ(x)ΩFC (x) > C

∫ +∞

0

dr = +∞ �
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5. Bottom of the essential spe
trum

Coming ba
k to regular Hilbert geometries, we will now study the essential spe
trum and prove The-

orem B.

Theorem 5.1. Let (C, dC) be a regular Hilbert geometry. Let σ
ess

(FC) be the essential spe
trum of −∆FC
.

Then

inf σ
ess

(FC) =
(n− 1)2

4
.

So, if the λ1 of a regular Hilbert geometry is stri
tly less than (n− 1)2/4, then it is a true eigenvalue,


ontrarily to the hyperboli
 
ase where the λ1 is just the in�mum of the spe
trum.

Note that, in the next se
tion, we will 
onstru
t examples of Hilbert geometries with eigenvalue

stri
tly smaller than (n − 1)2/4. Indeed, we will 
onstru
t examples with arbitrarily many, arbitrarily

small eigenvalues.

To prove our result on the essential spe
trum, we will use the Cheeger inequality for weighted Lapla-


ians and 
ontrol the Cheeger 
onstant in regular Hilbert geometries using Corollaries 3.7 and 3.8.

5.1. Cheeger 
onstant, weighted Lapla
ians and essential spe
trum. If F is a Finsler metri
 on

a manifold M , then (see [3℄) ∆F
is a weighted Lapla
ian with symbol σF

and symmetri
 with respe
t to

the volume ΩF
. Hen
e, we have the following lower bound for the �rst eigenvalue of −∆F

:

Proposition 5.2 (Cheeger Inequality). Let M be a non-
ompa
t manifold and F a Finsler metri
 on

M . Let d volσ
F

be the volume form of the Riemannian metri
 dual to σF
, dareaσ

F

the asso
iated area

element and µ : M → R the fun
tion su
h that ΩF = µdvolσ
F

. Set

hσ,Ω
Cheeger(M) := inf

D

{

∫

∂D
µ(x)dareaσ

F

∫

D dvolσ
F

}

,

where the in�mum is taken over all 
ompa
t domains D with smooth boundary.

If λ1 is the bottom of the spe
trum of −∆F
on M , then

4λ1 > hσ,Ω
Cheeger(M)2.

We do not provide the proof as it is the exa
t same as for the traditional Cheeger inequality (see for

instan
e [19℄). To study the essential spe
trum, we also need the de
omposition prin
iple of Donnelly

and Li, whi
h states that the essential spe
trum is independent of the behavior of the operator on any


ompa
t subset:

Proposition 5.3 (De
omposition Prin
iple of Donnelly and Li [15℄). Let M be a non-
ompa
t manifold

and F a Finsler metri
 on M . Let M ′
be a 
ompa
t sub-manifold of M of same dimension. Then

σ
ess

(M,F ) = σ
ess

(M rM ′, F ).

In parti
ular,

hσ,Ω
Cheeger(M rM ′)2 6 4 inf σ

ess

(F ).

We also have the following known result. As we did not �nd any referen
e, we provide a proof.

Lemma 5.4. Let {M ′
i} be an in
reasing family of 
ompa
t sub-manifolds of M of the same dimension,

su
h that ∪iM
′
i = M . Then

inf σ
ess

(M,F ) = lim
i→∞

λ1(M rM ′
i , F ),

where λ1(M rM ′
i , F ) denotes the Diri
hlet spe
trum of M rM ′

i .

Proof. Let us write λi
1 := λ1(M r M ′

i , F ). By the De
omposition prin
iple, we have that, for all i,
λi
1 6 inf σ

ess

(M,F ). We suppose that λi
1 < inf σ

ess

(M,F ), otherwise we are done. Let λ = limi→∞ λi
1,

whi
h exists be
ause, as {M ′
i} is in
reasing, the sequen
e {λi

1} is nonde
reasing. To prove that λ is

in the essential spe
trum, we are going to show that, for any ε > 0, there exists a family of fun
tions

fi ∈ L2(M), with disjoint supports, su
h that

‖−∆F fi − λfi‖ 6 ε‖fi‖,
where ‖·‖ denotes the L2

-norm with respe
t to ΩF
.

Let ε > 0. As λi
1 is an eigenvalue with �nite multipli
ity of −∆F

on M rM ′
i , we 
an �nd a fun
tion

fi ∈ L2(M rM ′
i) with 
ompa
t support su
h that

‖−∆Ffi − λi
1fi‖ 6 ε‖fi‖.
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Up to taking a subsequen
e, we 
an suppose that suppfi ⊂ M ′
i+1, so that suppfi ⊂ M ′

i+1 rM ′
i . Hen
e,

for any i 6= j, we have suppfi ∩ suppfj = ∅. So, for i large enough,
‖−∆Ffi − λfi‖ 6 ‖−∆F fi − λi

1fi‖+ |λ− λi
1|‖fi‖ 6 2ε‖fi‖. �

This gives a part of Theorem 5.1.

Corollary 5.5. Let (C, dC) be a regular Hilbert geometry. Then

inf σ
ess

(FC) 6 (n− 1)2/4.

Proof. Pi
k o ∈ C. Then Corollary 4.10 gives that, for any i > 1, λ1(C r B(o, i)) 6 (n − 1)2/4. The

previous lemma allows us to 
on
lude. �

5.2. Essential spe
trum of regular Hilbert geometries. The next few lemmas will allow us to prove

the inequality inf σ
ess

(FC) > (n − 1)2/4 and thus 
on
lude the proof of Theorem 5.1. Denote by σ the

symbol of −∆FC
, by hσ,Ω

Cheeger the weighted Cheeger 
onstant asso
iated with σ and ΩFC
and by hCheeger

the traditional Cheeger 
onstant for the Riemannian metri
 dual to σ.
Let o ∈ C be �xed and K a relatively 
ompa
t open subset of C.

Lemma 5.6. For any C > 1, there exists a 
onstant R = R(C) > 0 and a 
onstant C1 = C1(C) > 1
su
h that, on C rB(o,R), we have:

C−1
1 6

σ∗

F 2
6 C1.

Furthermore, C1 tends to 1 as C tends to 1.

Proof. Let C > 1. A

ording to Corollary 3.7, there exists R = R(C) > 0 and a Riemannian metri
 g on

C r B(o,R) su
h that C−1g 6 F 2
C 6 Cg. By Proposition 4.5, there exists a 
onstant C′ = C′(C, n) > 1

su
h that (C′C)−1F 2
C 6 σ∗ 6 C′CF 2

C on all of C r B(o,R). Finally, still a

ording to Proposition 4.5,

C′C tends to 1 when C tends to 1, so we 
an set C1 = C′C. �

Lemma 5.7. For any C > 1, there exists a 
onstant R = R(C) > 0 and a 
onstant C2 = C2(C) > 1
su
h that

hσ,Ω
Cheeger (C rB(o,R)) > C−1

2 hCheeger (C rB(o,R)) .

Furthermore, C2 tends to 1 as C tends to 1.

Proof. Let C > 1. By Lemma 5.6, there exist 
onstants R = R(C) > 0 and C1 > 1 su
h that, on

C r B(o,R), we have C−1
1 F 2

C 6 σ∗ 6 C1F
2
C . Let µ : M → R be the fun
tion su
h that ΩF = µd volσ

F

.

By Lemma 4.7, we have C−n
1 6 µ(x) 6 Cn

1 for any x ∈ C r B(o,R). So we get that, for any 
ompa
t

domain D in C rB(o,R) with smooth boundary,

C−n
1

∫

∂D

dareaσ 6

∫

∂D

µ(x)dareaσ
F

6 Cn
1

∫

∂D

µ(x)dareaσ
F

C−n
1

∫

D

dvolσ 6

∫

D

ΩFC 6 Cn
1

∫

D

dvolσ.

Therefore, setting C2 = C2n
1 gives the 
laim. �

Lemma 5.8. For any C > 1, there exists a 
onstant R = R(C) > 0 and a 
onstant C3 = C3(C) > 1
su
h that

hCheeger (C rB(o,R)) > C−1
3 (n− 1).

Furthermore, C3 tends to 1 as C tends to 1.

Proof. Let C > 1. Let R = R(C) > 0, Ux(C) and hx, x ∈ ∂C, be given by Corollary 3.8. Let D be a


ompa
t domain in C r B(o,R) with smooth boundary. As the goal is to 
ontrol the Cheeger 
onstant,

we 
an suppose that D is a 
onvex domain, be
ause 
onvex sets minimize the ratio of area over volume.

For ea
h x ∈ ∂C, let Kx be a family of open 
ones with vertex o su
h that, for any x ∈ ∂C, Kx ∩D ⊂
Ux(C) and ∪x∈∂CKx 
overs D. Su
h a family exists be
ause ∪x∈∂CUx openly 
overs CrB(o,R). Remark

that the boundary of Kx is a union of geodesi
s of FC , whi
h are also geodesi
s of hx.

Now, by 
ompa
tness of D, there exist x1, . . . , xk ∈ ∂C su
h that ∪iKxi
openly 
overs D. By 
hoosing

the 
onesKxi
to be smaller if ne
essary, we 
an assume that the domainD is partitioned into ∪16i6k(Kxi

∩
D).
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Claim 5.9. For any 1 6 i 6 k, we have

Areahxi (Kxi
∩ ∂D)

Volhxi (Kxi
∩D)

> (n− 1).

Proof of Claim 5.9. As hxi
is a hyperboli
 metri
 and the sides of Kxi

are geodesi
s of hxi
, we have that

Areahxi (Kxi
∩ ∂D)

Volhxi (Kxi
)

> (n− 1).

Indeed, as we are in the hyperboli
 setting, this 
an be proved by a dire
t 
omputation using the divergen
e

formula. As Volhxi (Kxi
) > Volhxi (Kxi

∩D), we get the 
laim. �

For all 1 6 i 6 k holds C−1
hxi

6 F 2
C 6 Chxi

on Uxi
(C). As in Lemma 5.6, there exists a 
onstant

C′
1 := C′

1(C) su
h that, on Uxi
(C),

C′−1
1 hxi

6 σ∗ 6 C′
1hxi

, 1 6 i 6 k,

and, furthermore, limC→1 C
′
1(C) = 1.

Hen
e, for any domain U in Uxi
(C), and in parti
ular for Kxi

∩D, we have

C′−n−1
1

∫

∂U

dareahxi 6

∫

∂U

dareaσ 6 C′n−1
1

∫

∂U

dareahxi ,

C′−n
1

∫

U

dvolhxi 6

∫

U

dvolσ 6 C′n
1

∫

U

dvolhxi .

So, thanks to Claim 5.9, we get

Areaσ (Kxi
∩ ∂D)

Volσ (Kxi
∩D)

> C′−2n−1
1 (n− 1).

Setting C3 := C′2n+1
1 , we have

Areaσ(∂D) =

k
∑

i=1

Areaσ(Kxi
∩ ∂D) > C−1

3 (n− 1)

k
∑

i=1

Volσ(Kxi
∩D) = C−1

3 (n− 1)Volσ(D),

Finally, C3 tends to 1 when C tends to 1, be
ause it is the 
ase for C′
1. �

We 
an now 
omplete a

Proof of Theorem 5.1. It remains to show that the in�mum of the essential spe
trum is greater than

(n− 1)2/4. Let C > 1. Combining Proposition 5.3 with Lemmas 5.7 and 5.8, we see that

4 inf σ
ess

(F ) > (C2(C)C3(C))−2(n− 1)2

for some C2(C), C3(C) > 1. When C goes to 1, C2(C) and C3(C) also tend to 1, hen
e

4 inf σ
ess

(F ) > (n− 1)2. �

6. Small eigenvalues

The Hilbert geometries of simpli
es is a very simple one:

Proposition 6.1 ([13℄). The Hilbert geometry de�ned by a simplex of RP
n
is isometri
 to a normed

ve
tor spa
e of dimension n.

In this se
tion, we 
onstru
t, by taking C2
-approximations of simpli
es, properly 
onvex sets with

arbitrarily many, arbitrarily small eigenvalues.

Theorem 6.2. Let ε > 0 and N ∈ N. There exists a regular Hilbert geometry (C, dC) su
h that the N
�rst eigenvalues of −∆FC

are below ε.

Let Sm be a family of simpli
es in R
n

onverging in the Hausdor� distan
e to a simplex S∞ and su
h

that, for all m, S∞ ⊂ Sm. Let Cm be a family of 
onvex subsets of Rn
de�ning regular Hilbert geometries

su
h that, for all m, S∞ ⊂ Cm ⊂ Sm. For simpli
ity, we write Fm instead of FCm
and F∞ instead of FS∞

.

We write ΩF∞
for the Holmes�Thompson volume of F∞.

Lemma 6.3. Let K be a 
ompa
t set in S∞. Let µm : S∞ → R+
be the fun
tion su
h that ΩFm = µmΩF∞

.

For any η > 1, there exists M = M(K, η) ∈ N su
h that, for any x, y ∈ K and m > M , we have

η−1dS∞
(x, y) 6 dCm

(x, y) 6 dS∞
(x, y)

and

η−1 6 µm(x) 6 η.
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Proof. As S∞ ⊂ Cm ⊂ Sm, we have, for any x ∈ S∞ and m ∈ N,

FSm
(x, ·) 6 FCm

(x, ·) 6 FS∞
(x, ·).

As Sm 
onverges to S∞ when m tends to in�nity, the ratio FSm
/FS∞

, de�ned on HS∞, 
onverges

uniformly on 
ompa
t subsets of HS∞ to 1. This is enough to 
on
lude. �

Denote by Bm(x,R) the open metri
 ball of radius R > 0 
entered at x for Cm, 0 6 m 6 ∞. For given

R > 0, m ∈ N and x ∈ S∞, we de�ne the fun
tion fR,m,x : Cm → R by

fR,m,x(y) =











1 if y ∈ Bm(x,R)

(R + 1)− dCm
(x, y) if y ∈ Bm(x,R + 1)rBm(x,R)

0 if y ∈ Cm rBm(x,R+ 1).

Lemma 6.4. Let ε > 0. Let R > 0 be 
hosen su
h that ((R + 1)n −Rn) /Rn < ε/(8n). Let x ∈ S∞ and

K be a 
ompa
t set in S∞ 
ontaining Bm(x,R+1) for all m big enough. There exists M ∈ N, depending

on K and ε, su
h that, for all m > M ,

RFm(fR,m,x) 6 ε/2.

Proof. We write Xm for the generator of the geodesi
 �ow of Fm on HCm. Let us start by giving a �rst

bound on RFm(fR,m,x):

RFm(fR,m,x) =
n

volEucl(Sn−1)

∫

HCm
(LXm

π∗fR,m,x)
2
AFm ∧

(

dAFm
)n−1

∫

Cm
f2ΩFm

=
n

volEucl(Sn−1)

∫

H(Bm(x,R+1)rBm(x,R)) (LXm
π∗fR,m,x)

2
AFm ∧

(

dAFm
)n−1

∫

Bm(x,R+1) f
2ΩFm

6 n

∫

Bm(x,R+1)rBm(x,R) Ω
Fm

∫

Bm(x,R) Ω
Fm

.

So all we have to do now is give an upper bound of

∫

Bm(x,R+1)rBm(x,R)
ΩFm

and a lower bound of

∫

Bm(x,R)
ΩFm

su
h that their ratio is as small as we want for R and m big.

Let η > 1 be su
h that

nηn+2(1 − ηn) 6 ε/4

ηn+2 6 2.

By Lemma 6.3, there exists M ∈ N, depending on K and ε, su
h that, for all m > M ,

η−1dS∞
(x, y) 6 dCm

(x, y) 6 dS∞
(x, y).

Hen
e, for m > M , we have B∞(x,R) ⊂ Bm(x,R) ⊂ B∞(x, ηR), and

Bm(x,R + 1)rBm(x,R) ⊂ B∞(x, η(R + 1))rB∞(x,R).

The se
ond part of Lemma 6.3 gives then

∫

Bm(x,R+1)rBm(x,R)

ΩFm 6 η

∫

B∞(x,η(R+1))rB∞(x,R)

ΩF∞ ,

∫

Bm(x,R)

ΩFm > η−1

∫

B∞(x,R)

ΩF∞ .

Now, sin
e the Hilbert geometry (S∞, dS∞
) is isometri
 to a normed ve
tor spa
e (Proposition 6.1), it is

easy to 
ompute volumes: there is some C > 0 su
h that

∫

B∞(x,η(R+1))rB∞(x,R)

ΩF∞ = C volEucl(S
n−1) (ηn(R+ 1)n −Rn)

∫

B∞(x,R)

ΩF∞ = C volEucl(S
n−1)Rn.

Finally, we get

RFm(fR,m,x) 6 nη2
ηn(R+ 1)n −Rn

Rn
= nηn+2

(

(1 − η−n) +
(R+ 1)n −Rn

Rn

)

6 ε/2,

where the last inequality is obtained thanks to our assumptions on R and η. �

We 
an now �nish the



LAPLACIAN AND SPECTRAL GAP IN REGULAR HILBERT GEOMETRIES 21

Proof of Theorem 6.2. Let ε > 0 and N ∈ N. Choose R > 0 as in Lemma 6.4 and points x1, . . . , xN

in S∞ su
h that the dS∞
-distan
e between ea
h pair of points is at least 2R + 3. Then pi
k a 
ompa
t

set K ⊂ S∞ 
ontaining all the balls Bm(xi, R + 1) for m big enough. Su
h a 
ompa
t set exists: for

instan
e, take a 
ompa
t set whi
h 
ontains the balls B∞(xi, R + 3); then, for m big enough, we have

Bm(xi, R+ 1) ⊂ B∞(xi, R+ 3).
By Lemma 6.4, there exists M ∈ N, su
h that for m > M , the fun
tions fR,m,xi

, 1 6 i 6 N , are su
h

that

RFm(fR,m,xi
) 6 ε/2.

Furthermore, the xi are su�
iently apart so that the fun
tions fR,m,xi
have disjoint support. The Min-

Max prin
iple (Theorem 2.5) allows us to 
on
lude that there are at least N eigenvalues below ε. �
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